Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmoprabss | Structured version Visualization version GIF version |
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
dmoprabss | ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmoprab 7438 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} | |
2 | 19.42v 1956 | . . . 4 ⊢ (∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧𝜑)) | |
3 | 2 | opabbii 5159 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧𝜑)} |
4 | opabssxp 5710 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑧𝜑)} ⊆ (𝐴 × 𝐵) | |
5 | 3, 4 | eqsstri 3966 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
6 | 1, 5 | eqsstri 3966 | 1 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3898 {copab 5154 × cxp 5618 dom cdm 5620 {coprab 7338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-dm 5630 df-oprab 7341 |
This theorem is referenced by: mpondm0 7572 elmpocl 7573 oprabexd 7886 oprabex 7887 bropopvvv 7998 bropfvvvv 8000 dmaddsr 10942 dmmulsr 10943 axaddf 11002 axmulf 11003 |
Copyright terms: Public domain | W3C validator |