MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmoprabss Structured version   Visualization version   GIF version

Theorem dmoprabss 7355
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmoprabss dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dmoprabss
StepHypRef Expression
1 dmoprab 7354 . 2 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 19.42v 1958 . . . 4 (∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑))
32opabbii 5137 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑)}
4 opabssxp 5669 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ ∃𝑧𝜑)} ⊆ (𝐴 × 𝐵)
53, 4eqsstri 3951 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
61, 5eqsstri 3951 1 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1783  wcel 2108  wss 3883  {copab 5132   × cxp 5578  dom cdm 5580  {coprab 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-oprab 7259
This theorem is referenced by:  mpondm0  7488  elmpocl  7489  oprabexd  7791  oprabex  7792  bropopvvv  7901  bropfvvvv  7903  dmaddsr  10772  dmmulsr  10773  axaddf  10832  axmulf  10833
  Copyright terms: Public domain W3C validator