MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-rn Structured version   Visualization version   GIF version

Theorem ex-rn 30243
Description: Example for df-rn 5683. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-rn (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})

Proof of Theorem ex-rn
StepHypRef Expression
1 rneq 5932 . 2 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = ran {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4627 . . . 4 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
32rneqi 5933 . . 3 ran {⟨2, 6⟩, ⟨3, 9⟩} = ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
4 rnun 6144 . . 3 ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩})
5 2nn 12309 . . . . . . 7 2 ∈ ℕ
65elexi 3490 . . . . . 6 2 ∈ V
76rnsnop 6222 . . . . 5 ran {⟨2, 6⟩} = {6}
8 3nn 12315 . . . . . . 7 3 ∈ ℕ
98elexi 3490 . . . . . 6 3 ∈ V
109rnsnop 6222 . . . . 5 ran {⟨3, 9⟩} = {9}
117, 10uneq12i 4157 . . . 4 (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = ({6} ∪ {9})
12 df-pr 4627 . . . 4 {6, 9} = ({6} ∪ {9})
1311, 12eqtr4i 2759 . . 3 (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = {6, 9}
143, 4, 133eqtri 2760 . 2 ran {⟨2, 6⟩, ⟨3, 9⟩} = {6, 9}
151, 14eqtrdi 2784 1 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  cun 3943  {csn 4624  {cpr 4626  cop 4630  ran crn 5673  cn 12236  2c2 12291  3c3 12292  6c6 12295  9c9 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734  ax-1cn 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12237  df-2 12299  df-3 12300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator