![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version |
Description: Example for df-rn 5711. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-rn | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5961 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = ran {〈2, 6〉, 〈3, 9〉}) | |
2 | df-pr 4651 | . . . 4 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
3 | 2 | rneqi 5962 | . . 3 ⊢ ran {〈2, 6〉, 〈3, 9〉} = ran ({〈2, 6〉} ∪ {〈3, 9〉}) |
4 | rnun 6177 | . . 3 ⊢ ran ({〈2, 6〉} ∪ {〈3, 9〉}) = (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) | |
5 | 2nn 12366 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
6 | 5 | elexi 3511 | . . . . . 6 ⊢ 2 ∈ V |
7 | 6 | rnsnop 6255 | . . . . 5 ⊢ ran {〈2, 6〉} = {6} |
8 | 3nn 12372 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
9 | 8 | elexi 3511 | . . . . . 6 ⊢ 3 ∈ V |
10 | 9 | rnsnop 6255 | . . . . 5 ⊢ ran {〈3, 9〉} = {9} |
11 | 7, 10 | uneq12i 4189 | . . . 4 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = ({6} ∪ {9}) |
12 | df-pr 4651 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
13 | 11, 12 | eqtr4i 2771 | . . 3 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = {6, 9} |
14 | 3, 4, 13 | 3eqtri 2772 | . 2 ⊢ ran {〈2, 6〉, 〈3, 9〉} = {6, 9} |
15 | 1, 14 | eqtrdi 2796 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3974 {csn 4648 {cpr 4650 〈cop 4654 ran crn 5701 ℕcn 12293 2c2 12348 3c3 12349 6c6 12352 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |