Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version |
Description: Example for df-rn 5636. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-rn | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5882 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = ran {〈2, 6〉, 〈3, 9〉}) | |
2 | df-pr 4581 | . . . 4 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
3 | 2 | rneqi 5883 | . . 3 ⊢ ran {〈2, 6〉, 〈3, 9〉} = ran ({〈2, 6〉} ∪ {〈3, 9〉}) |
4 | rnun 6089 | . . 3 ⊢ ran ({〈2, 6〉} ∪ {〈3, 9〉}) = (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) | |
5 | 2nn 12152 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
6 | 5 | elexi 3461 | . . . . . 6 ⊢ 2 ∈ V |
7 | 6 | rnsnop 6167 | . . . . 5 ⊢ ran {〈2, 6〉} = {6} |
8 | 3nn 12158 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
9 | 8 | elexi 3461 | . . . . . 6 ⊢ 3 ∈ V |
10 | 9 | rnsnop 6167 | . . . . 5 ⊢ ran {〈3, 9〉} = {9} |
11 | 7, 10 | uneq12i 4113 | . . . 4 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = ({6} ∪ {9}) |
12 | df-pr 4581 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
13 | 11, 12 | eqtr4i 2768 | . . 3 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = {6, 9} |
14 | 3, 4, 13 | 3eqtri 2769 | . 2 ⊢ ran {〈2, 6〉, 〈3, 9〉} = {6, 9} |
15 | 1, 14 | eqtrdi 2793 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∪ cun 3900 {csn 4578 {cpr 4580 〈cop 4584 ran crn 5626 ℕcn 12079 2c2 12134 3c3 12135 6c6 12138 9c9 12141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 ax-1cn 11035 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-nn 12080 df-2 12142 df-3 12143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |