|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version | ||
| Description: Example for df-rn 5696. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) | 
| Ref | Expression | 
|---|---|
| ex-rn | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rneq 5947 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = ran {〈2, 6〉, 〈3, 9〉}) | |
| 2 | df-pr 4629 | . . . 4 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 3 | 2 | rneqi 5948 | . . 3 ⊢ ran {〈2, 6〉, 〈3, 9〉} = ran ({〈2, 6〉} ∪ {〈3, 9〉}) | 
| 4 | rnun 6165 | . . 3 ⊢ ran ({〈2, 6〉} ∪ {〈3, 9〉}) = (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) | |
| 5 | 2nn 12339 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 6 | 5 | elexi 3503 | . . . . . 6 ⊢ 2 ∈ V | 
| 7 | 6 | rnsnop 6244 | . . . . 5 ⊢ ran {〈2, 6〉} = {6} | 
| 8 | 3nn 12345 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 9 | 8 | elexi 3503 | . . . . . 6 ⊢ 3 ∈ V | 
| 10 | 9 | rnsnop 6244 | . . . . 5 ⊢ ran {〈3, 9〉} = {9} | 
| 11 | 7, 10 | uneq12i 4166 | . . . 4 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = ({6} ∪ {9}) | 
| 12 | df-pr 4629 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
| 13 | 11, 12 | eqtr4i 2768 | . . 3 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = {6, 9} | 
| 14 | 3, 4, 13 | 3eqtri 2769 | . 2 ⊢ ran {〈2, 6〉, 〈3, 9〉} = {6, 9} | 
| 15 | 1, 14 | eqtrdi 2793 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3949 {csn 4626 {cpr 4628 〈cop 4632 ran crn 5686 ℕcn 12266 2c2 12321 3c3 12322 6c6 12325 9c9 12328 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-1cn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-2 12329 df-3 12330 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |