MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-rn Structured version   Visualization version   GIF version

Theorem ex-rn 30415
Description: Example for df-rn 5627. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-rn (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})

Proof of Theorem ex-rn
StepHypRef Expression
1 rneq 5876 . 2 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = ran {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4579 . . . 4 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
32rneqi 5877 . . 3 ran {⟨2, 6⟩, ⟨3, 9⟩} = ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
4 rnun 6092 . . 3 ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩})
5 2nn 12195 . . . . . . 7 2 ∈ ℕ
65elexi 3459 . . . . . 6 2 ∈ V
76rnsnop 6171 . . . . 5 ran {⟨2, 6⟩} = {6}
8 3nn 12201 . . . . . . 7 3 ∈ ℕ
98elexi 3459 . . . . . 6 3 ∈ V
109rnsnop 6171 . . . . 5 ran {⟨3, 9⟩} = {9}
117, 10uneq12i 4116 . . . 4 (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = ({6} ∪ {9})
12 df-pr 4579 . . . 4 {6, 9} = ({6} ∪ {9})
1311, 12eqtr4i 2757 . . 3 (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = {6, 9}
143, 4, 133eqtri 2758 . 2 ran {⟨2, 6⟩, ⟨3, 9⟩} = {6, 9}
151, 14eqtrdi 2782 1 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3900  {csn 4576  {cpr 4578  cop 4582  ran crn 5617  cn 12122  2c2 12177  3c3 12178  6c6 12181  9c9 12184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-1cn 11061
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123  df-2 12185  df-3 12186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator