![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version |
Description: Example for df-rn 5687. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-rn | ⊢ (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5935 | . 2 ⊢ (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = ran {⟨2, 6⟩, ⟨3, 9⟩}) | |
2 | df-pr 4631 | . . . 4 ⊢ {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) | |
3 | 2 | rneqi 5936 | . . 3 ⊢ ran {⟨2, 6⟩, ⟨3, 9⟩} = ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) |
4 | rnun 6145 | . . 3 ⊢ ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) | |
5 | 2nn 12284 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
6 | 5 | elexi 3493 | . . . . . 6 ⊢ 2 ∈ V |
7 | 6 | rnsnop 6223 | . . . . 5 ⊢ ran {⟨2, 6⟩} = {6} |
8 | 3nn 12290 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
9 | 8 | elexi 3493 | . . . . . 6 ⊢ 3 ∈ V |
10 | 9 | rnsnop 6223 | . . . . 5 ⊢ ran {⟨3, 9⟩} = {9} |
11 | 7, 10 | uneq12i 4161 | . . . 4 ⊢ (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = ({6} ∪ {9}) |
12 | df-pr 4631 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
13 | 11, 12 | eqtr4i 2763 | . . 3 ⊢ (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = {6, 9} |
14 | 3, 4, 13 | 3eqtri 2764 | . 2 ⊢ ran {⟨2, 6⟩, ⟨3, 9⟩} = {6, 9} |
15 | 1, 14 | eqtrdi 2788 | 1 ⊢ (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∪ cun 3946 {csn 4628 {cpr 4630 ⟨cop 4634 ran crn 5677 ℕcn 12211 2c2 12266 3c3 12267 6c6 12270 9c9 12273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-1cn 11167 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-2 12274 df-3 12275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |