MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-rn Structured version   Visualization version   GIF version

Theorem ex-rn 29092
Description: Example for df-rn 5636. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-rn (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})

Proof of Theorem ex-rn
StepHypRef Expression
1 rneq 5882 . 2 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = ran {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4581 . . . 4 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
32rneqi 5883 . . 3 ran {⟨2, 6⟩, ⟨3, 9⟩} = ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
4 rnun 6089 . . 3 ran ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩})
5 2nn 12152 . . . . . . 7 2 ∈ ℕ
65elexi 3461 . . . . . 6 2 ∈ V
76rnsnop 6167 . . . . 5 ran {⟨2, 6⟩} = {6}
8 3nn 12158 . . . . . . 7 3 ∈ ℕ
98elexi 3461 . . . . . 6 3 ∈ V
109rnsnop 6167 . . . . 5 ran {⟨3, 9⟩} = {9}
117, 10uneq12i 4113 . . . 4 (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = ({6} ∪ {9})
12 df-pr 4581 . . . 4 {6, 9} = ({6} ∪ {9})
1311, 12eqtr4i 2768 . . 3 (ran {⟨2, 6⟩} ∪ ran {⟨3, 9⟩}) = {6, 9}
143, 4, 133eqtri 2769 . 2 ran {⟨2, 6⟩, ⟨3, 9⟩} = {6, 9}
151, 14eqtrdi 2793 1 (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3900  {csn 4578  {cpr 4580  cop 4584  ran crn 5626  cn 12079  2c2 12134  3c3 12135  6c6 12138  9c9 12141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655  ax-1cn 11035
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ov 7345  df-om 7786  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-nn 12080  df-2 12142  df-3 12143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator