Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version |
Description: Example for df-rn 5591. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-rn | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5834 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = ran {〈2, 6〉, 〈3, 9〉}) | |
2 | df-pr 4561 | . . . 4 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
3 | 2 | rneqi 5835 | . . 3 ⊢ ran {〈2, 6〉, 〈3, 9〉} = ran ({〈2, 6〉} ∪ {〈3, 9〉}) |
4 | rnun 6038 | . . 3 ⊢ ran ({〈2, 6〉} ∪ {〈3, 9〉}) = (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) | |
5 | 2nn 11976 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
6 | 5 | elexi 3441 | . . . . . 6 ⊢ 2 ∈ V |
7 | 6 | rnsnop 6116 | . . . . 5 ⊢ ran {〈2, 6〉} = {6} |
8 | 3nn 11982 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
9 | 8 | elexi 3441 | . . . . . 6 ⊢ 3 ∈ V |
10 | 9 | rnsnop 6116 | . . . . 5 ⊢ ran {〈3, 9〉} = {9} |
11 | 7, 10 | uneq12i 4091 | . . . 4 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = ({6} ∪ {9}) |
12 | df-pr 4561 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
13 | 11, 12 | eqtr4i 2769 | . . 3 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = {6, 9} |
14 | 3, 4, 13 | 3eqtri 2770 | . 2 ⊢ ran {〈2, 6〉, 〈3, 9〉} = {6, 9} |
15 | 1, 14 | eqtrdi 2795 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3881 {csn 4558 {cpr 4560 〈cop 4564 ran crn 5581 ℕcn 11903 2c2 11958 3c3 11959 6c6 11962 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-3 11967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |