| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version | ||
| Description: Example for df-rn 5649. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-rn | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneq 5900 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = ran {〈2, 6〉, 〈3, 9〉}) | |
| 2 | df-pr 4592 | . . . 4 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 3 | 2 | rneqi 5901 | . . 3 ⊢ ran {〈2, 6〉, 〈3, 9〉} = ran ({〈2, 6〉} ∪ {〈3, 9〉}) |
| 4 | rnun 6118 | . . 3 ⊢ ran ({〈2, 6〉} ∪ {〈3, 9〉}) = (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) | |
| 5 | 2nn 12259 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 6 | 5 | elexi 3470 | . . . . . 6 ⊢ 2 ∈ V |
| 7 | 6 | rnsnop 6197 | . . . . 5 ⊢ ran {〈2, 6〉} = {6} |
| 8 | 3nn 12265 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 9 | 8 | elexi 3470 | . . . . . 6 ⊢ 3 ∈ V |
| 10 | 9 | rnsnop 6197 | . . . . 5 ⊢ ran {〈3, 9〉} = {9} |
| 11 | 7, 10 | uneq12i 4129 | . . . 4 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = ({6} ∪ {9}) |
| 12 | df-pr 4592 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
| 13 | 11, 12 | eqtr4i 2755 | . . 3 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = {6, 9} |
| 14 | 3, 4, 13 | 3eqtri 2756 | . 2 ⊢ ran {〈2, 6〉, 〈3, 9〉} = {6, 9} |
| 15 | 1, 14 | eqtrdi 2780 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 {csn 4589 {cpr 4591 〈cop 4595 ran crn 5639 ℕcn 12186 2c2 12241 3c3 12242 6c6 12245 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |