MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1OLD Structured version   Visualization version   GIF version

Theorem en1OLD 9087
Description: Obsolete version of en1 9086 as of 23-Sep-2024. (Contributed by NM, 25-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1OLD (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1OLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 8529 . . . . 5 1o = {∅}
21breq2i 5174 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 bren 9013 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 275 . . 3 (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 6874 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 6869 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 6837 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 6862 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 5325 . . . . . . . . . . 11 ∅ ∈ V
1110fsn2 7170 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 496 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 5963 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 6255 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15eqtrdi 2796 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2782 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
18 fvex 6933 . . . . . 6 (𝑓‘∅) ∈ V
19 sneq 4658 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2019eqeq2d 2751 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2118, 20spcev 3619 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
225, 17, 213syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2322exlimiv 1929 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
244, 23sylbi 217 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
25 vex 3492 . . . . 5 𝑥 ∈ V
2625ensn1 9082 . . . 4 {𝑥} ≈ 1o
27 breq1 5169 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
2826, 27mpbiri 258 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
2928exlimiv 1929 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3024, 29impbii 209 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777  wcel 2108  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  ccnv 5699  ran crn 5701  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  1oc1o 8515  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-en 9004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator