MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1OLD Structured version   Visualization version   GIF version

Theorem en1OLD 8766
Description: Obsolete version of en1 8765 as of 23-Sep-2024. (Contributed by NM, 25-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1OLD (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1OLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 8279 . . . . 5 1o = {∅}
21breq2i 5078 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 bren 8701 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 274 . . 3 (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 6712 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 6707 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 6675 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 6700 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 5226 . . . . . . . . . . 11 ∅ ∈ V
1110fsn2 6990 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 496 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 5836 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 6116 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15eqtrdi 2795 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2780 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
18 fvex 6769 . . . . . 6 (𝑓‘∅) ∈ V
19 sneq 4568 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2019eqeq2d 2749 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2118, 20spcev 3535 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
225, 17, 213syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2322exlimiv 1934 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
244, 23sylbi 216 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
25 vex 3426 . . . . 5 𝑥 ∈ V
2625ensn1 8761 . . . 4 {𝑥} ≈ 1o
27 breq1 5073 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
2826, 27mpbiri 257 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
2928exlimiv 1934 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3024, 29impbii 208 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wcel 2108  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  ccnv 5579  ran crn 5581  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  1oc1o 8260  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-en 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator