| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1rn | Structured version Visualization version GIF version | ||
| Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| s1rn | ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14563 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | rneqd 5902 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = ran {〈0, 𝐴〉}) |
| 3 | c0ex 11168 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | rnsnop 6197 | . 2 ⊢ ran {〈0, 𝐴〉} = {𝐴} |
| 5 | 2, 4 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 ran crn 5639 0cc0 11068 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-s1 14561 |
| This theorem is referenced by: s2rn 14929 s3rn 14930 s7rn 14931 cycpmco2f1 33081 cycpmco2rn 33082 unitprodclb 33360 mrsubvrs 35509 |
| Copyright terms: Public domain | W3C validator |