MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1rn Structured version   Visualization version   GIF version

Theorem s1rn 14524
Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
Assertion
Ref Expression
s1rn (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})

Proof of Theorem s1rn
StepHypRef Expression
1 s1val 14523 . . 3 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21rneqd 5884 . 2 (𝐴𝑉 → ran ⟨“𝐴”⟩ = ran {⟨0, 𝐴⟩})
3 c0ex 11128 . . 3 0 ∈ V
43rnsnop 6177 . 2 ran {⟨0, 𝐴⟩} = {𝐴}
52, 4eqtrdi 2780 1 (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4579  cop 4585  ran crn 5624  0cc0 11028  ⟨“cs1 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-mulcl 11090  ax-i2m1 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-s1 14521
This theorem is referenced by:  s2rn  14888  s3rn  14889  s7rn  14890  cycpmco2f1  33079  cycpmco2rn  33080  unitprodclb  33336  mrsubvrs  35494
  Copyright terms: Public domain W3C validator