| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1rn | Structured version Visualization version GIF version | ||
| Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| s1rn | ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14621 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | rneqd 5923 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = ran {〈0, 𝐴〉}) |
| 3 | c0ex 11234 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | rnsnop 6218 | . 2 ⊢ ran {〈0, 𝐴〉} = {𝐴} |
| 5 | 2, 4 | eqtrdi 2787 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4606 〈cop 4612 ran crn 5660 0cc0 11134 〈“cs1 14618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-s1 14619 |
| This theorem is referenced by: s2rn 14987 s3rn 14988 s7rn 14989 cycpmco2f1 33140 cycpmco2rn 33141 unitprodclb 33409 mrsubvrs 35549 |
| Copyright terms: Public domain | W3C validator |