| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1rn | Structured version Visualization version GIF version | ||
| Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| s1rn | ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14503 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | rneqd 5878 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = ran {〈0, 𝐴〉}) |
| 3 | c0ex 11103 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | rnsnop 6171 | . 2 ⊢ ran {〈0, 𝐴〉} = {𝐴} |
| 5 | 2, 4 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 ran crn 5617 0cc0 11003 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-s1 14501 |
| This theorem is referenced by: s2rn 14867 s3rn 14868 s7rn 14869 cycpmco2f1 33088 cycpmco2rn 33089 unitprodclb 33349 mrsubvrs 35554 |
| Copyright terms: Public domain | W3C validator |