MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1rn Structured version   Visualization version   GIF version

Theorem s1rn 14634
Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
Assertion
Ref Expression
s1rn (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})

Proof of Theorem s1rn
StepHypRef Expression
1 s1val 14633 . . 3 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21rneqd 5952 . 2 (𝐴𝑉 → ran ⟨“𝐴”⟩ = ran {⟨0, 𝐴⟩})
3 c0ex 11253 . . 3 0 ∈ V
43rnsnop 6246 . 2 ran {⟨0, 𝐴⟩} = {𝐴}
52, 4eqtrdi 2791 1 (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {csn 4631  cop 4637  ran crn 5690  0cc0 11153  ⟨“cs1 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-i2m1 11221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-s1 14631
This theorem is referenced by:  s2rn  14999  s3rn  15000  s7rn  15001  cycpmco2f1  33127  cycpmco2rn  33128  unitprodclb  33397  mrsubvrs  35507
  Copyright terms: Public domain W3C validator