Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1rn | Structured version Visualization version GIF version |
Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
s1rn | ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14231 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
2 | 1 | rneqd 5836 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = ran {〈0, 𝐴〉}) |
3 | c0ex 10900 | . . 3 ⊢ 0 ∈ V | |
4 | 3 | rnsnop 6116 | . 2 ⊢ ran {〈0, 𝐴〉} = {𝐴} |
5 | 2, 4 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 ran crn 5581 0cc0 10802 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-s1 14229 |
This theorem is referenced by: cycpmco2f1 31293 cycpmco2rn 31294 mrsubvrs 33384 |
Copyright terms: Public domain | W3C validator |