MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1rn Structured version   Visualization version   GIF version

Theorem s1rn 14509
Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
Assertion
Ref Expression
s1rn (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})

Proof of Theorem s1rn
StepHypRef Expression
1 s1val 14508 . . 3 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21rneqd 5882 . 2 (𝐴𝑉 → ran ⟨“𝐴”⟩ = ran {⟨0, 𝐴⟩})
3 c0ex 11113 . . 3 0 ∈ V
43rnsnop 6176 . 2 ran {⟨0, 𝐴⟩} = {𝐴}
52, 4eqtrdi 2784 1 (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4575  cop 4581  ran crn 5620  0cc0 11013  ⟨“cs1 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-mulcl 11075  ax-i2m1 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-s1 14506
This theorem is referenced by:  s2rn  14872  s3rn  14873  s7rn  14874  cycpmco2f1  33100  cycpmco2rn  33101  unitprodclb  33361  mrsubvrs  35587
  Copyright terms: Public domain W3C validator