| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1rn | Structured version Visualization version GIF version | ||
| Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| s1rn | ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14508 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | rneqd 5882 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = ran {〈0, 𝐴〉}) |
| 3 | c0ex 11113 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | rnsnop 6176 | . 2 ⊢ ran {〈0, 𝐴〉} = {𝐴} |
| 5 | 2, 4 | eqtrdi 2784 | 1 ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {csn 4575 〈cop 4581 ran crn 5620 0cc0 11013 〈“cs1 14505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-s1 14506 |
| This theorem is referenced by: s2rn 14872 s3rn 14873 s7rn 14874 cycpmco2f1 33100 cycpmco2rn 33101 unitprodclb 33361 mrsubvrs 35587 |
| Copyright terms: Public domain | W3C validator |