Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gidsn | Structured version Visualization version GIF version |
Description: Obsolete as of 23-Jan-2020. Use mnd1id 18024 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
gidsn | ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | grposnOLD 35626 | . 2 ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp |
3 | opex 5327 | . . . . 5 ⊢ 〈𝐴, 𝐴〉 ∈ V | |
4 | 3 | rnsnop 6057 | . . . 4 ⊢ ran {〈〈𝐴, 𝐴〉, 𝐴〉} = {𝐴} |
5 | 4 | eqcomi 2767 | . . 3 ⊢ {𝐴} = ran {〈〈𝐴, 𝐴〉, 𝐴〉} |
6 | eqid 2758 | . . 3 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) | |
7 | 5, 6 | grpoidcl 28401 | . 2 ⊢ ({〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴}) |
8 | elsni 4542 | . 2 ⊢ ((GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴} → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴) | |
9 | 2, 7, 8 | mp2b 10 | 1 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4525 〈cop 4531 ran crn 5528 ‘cfv 6339 GrpOpcgr 28376 GIdcgi 28377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-grpo 28380 df-gid 28381 |
This theorem is referenced by: zrdivrng 35697 |
Copyright terms: Public domain | W3C validator |