| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gidsn | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 23-Jan-2020. Use mnd1id 18672 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| gidsn | ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | grposnOLD 37864 | . 2 ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp |
| 3 | opex 5411 | . . . . 5 ⊢ 〈𝐴, 𝐴〉 ∈ V | |
| 4 | 3 | rnsnop 6177 | . . . 4 ⊢ ran {〈〈𝐴, 𝐴〉, 𝐴〉} = {𝐴} |
| 5 | 4 | eqcomi 2738 | . . 3 ⊢ {𝐴} = ran {〈〈𝐴, 𝐴〉, 𝐴〉} |
| 6 | eqid 2729 | . . 3 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) | |
| 7 | 5, 6 | grpoidcl 30476 | . 2 ⊢ ({〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴}) |
| 8 | elsni 4596 | . 2 ⊢ ((GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴} → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴) | |
| 9 | 2, 7, 8 | mp2b 10 | 1 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 〈cop 4585 ran crn 5624 ‘cfv 6486 GrpOpcgr 30451 GIdcgi 30452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-grpo 30455 df-gid 30456 |
| This theorem is referenced by: zrdivrng 37935 |
| Copyright terms: Public domain | W3C validator |