Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gidsn Structured version   Visualization version   GIF version

Theorem gidsn 38015
Description: Obsolete as of 23-Jan-2020. Use mnd1id 18692 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablsn.1 𝐴 ∈ V
Assertion
Ref Expression
gidsn (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴

Proof of Theorem gidsn
StepHypRef Expression
1 ablsn.1 . . 3 𝐴 ∈ V
21grposnOLD 37945 . 2 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp
3 opex 5409 . . . . 5 𝐴, 𝐴⟩ ∈ V
43rnsnop 6178 . . . 4 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
54eqcomi 2742 . . 3 {𝐴} = ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}
6 eqid 2733 . . 3 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})
75, 6grpoidcl 30498 . 2 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp → (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ∈ {𝐴})
8 elsni 4594 . 2 ((GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ∈ {𝐴} → (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴)
92, 7, 8mp2b 10 1 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583  ran crn 5622  cfv 6488  GrpOpcgr 30473  GIdcgi 30474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-grpo 30477  df-gid 30478
This theorem is referenced by:  zrdivrng  38016
  Copyright terms: Public domain W3C validator