Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gidsn Structured version   Visualization version   GIF version

Theorem gidsn 36089
Description: Obsolete as of 23-Jan-2020. Use mnd1id 18408 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablsn.1 𝐴 ∈ V
Assertion
Ref Expression
gidsn (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴

Proof of Theorem gidsn
StepHypRef Expression
1 ablsn.1 . . 3 𝐴 ∈ V
21grposnOLD 36019 . 2 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp
3 opex 5381 . . . . 5 𝐴, 𝐴⟩ ∈ V
43rnsnop 6124 . . . 4 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
54eqcomi 2748 . . 3 {𝐴} = ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}
6 eqid 2739 . . 3 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})
75, 6grpoidcl 28855 . 2 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp → (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ∈ {𝐴})
8 elsni 4583 . 2 ((GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ∈ {𝐴} → (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴)
92, 7, 8mp2b 10 1 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566  cop 4572  ran crn 5589  cfv 6430  GrpOpcgr 28830  GIdcgi 28831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-grpo 28834  df-gid 28835
This theorem is referenced by:  zrdivrng  36090
  Copyright terms: Public domain W3C validator