| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gidsn | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 23-Jan-2020. Use mnd1id 18692 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ablsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| gidsn | ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | grposnOLD 37945 | . 2 ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp |
| 3 | opex 5409 | . . . . 5 ⊢ 〈𝐴, 𝐴〉 ∈ V | |
| 4 | 3 | rnsnop 6178 | . . . 4 ⊢ ran {〈〈𝐴, 𝐴〉, 𝐴〉} = {𝐴} |
| 5 | 4 | eqcomi 2742 | . . 3 ⊢ {𝐴} = ran {〈〈𝐴, 𝐴〉, 𝐴〉} |
| 6 | eqid 2733 | . . 3 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) | |
| 7 | 5, 6 | grpoidcl 30498 | . 2 ⊢ ({〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴}) |
| 8 | elsni 4594 | . 2 ⊢ ((GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴} → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴) | |
| 9 | 2, 7, 8 | mp2b 10 | 1 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 ran crn 5622 ‘cfv 6488 GrpOpcgr 30473 GIdcgi 30474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-grpo 30477 df-gid 30478 |
| This theorem is referenced by: zrdivrng 38016 |
| Copyright terms: Public domain | W3C validator |