Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gidsn Structured version   Visualization version   GIF version

Theorem gidsn 37946
Description: Obsolete as of 23-Jan-2020. Use mnd1id 18707 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablsn.1 𝐴 ∈ V
Assertion
Ref Expression
gidsn (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴

Proof of Theorem gidsn
StepHypRef Expression
1 ablsn.1 . . 3 𝐴 ∈ V
21grposnOLD 37876 . 2 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp
3 opex 5424 . . . . 5 𝐴, 𝐴⟩ ∈ V
43rnsnop 6197 . . . 4 ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} = {𝐴}
54eqcomi 2738 . . 3 {𝐴} = ran {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}
6 eqid 2729 . . 3 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩})
75, 6grpoidcl 30443 . 2 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp → (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ∈ {𝐴})
8 elsni 4606 . 2 ((GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ∈ {𝐴} → (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴)
92, 7, 8mp2b 10 1 (GId‘{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595  ran crn 5639  cfv 6511  GrpOpcgr 30418  GIdcgi 30419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-grpo 30422  df-gid 30423
This theorem is referenced by:  zrdivrng  37947
  Copyright terms: Public domain W3C validator