MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi Structured version   Visualization version   GIF version

Theorem fodomfi 8594
Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodom 9744 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fodomfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)

Proof of Theorem fodomfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6426 . . 3 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21adantl 474 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (𝐹𝐴) = 𝐵)
3 imaeq2 5768 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 “ ∅))
4 ima0 5787 . . . . . . 7 (𝐹 “ ∅) = ∅
53, 4syl6eq 2830 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
6 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
75, 6breq12d 4943 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ≼ 𝑥 ↔ ∅ ≼ ∅))
87imbi2d 333 . . . 4 (𝑥 = ∅ → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → ∅ ≼ ∅)))
9 imaeq2 5768 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
10 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10breq12d 4943 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹𝑦) ≼ 𝑦))
1211imbi2d 333 . . . 4 (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹𝑦) ≼ 𝑦)))
13 imaeq2 5768 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 “ (𝑦 ∪ {𝑧})))
14 id 22 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
1513, 14breq12d 4943 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))
1615imbi2d 333 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
17 imaeq2 5768 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
18 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
1917, 18breq12d 4943 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹𝐴) ≼ 𝐴))
2019imbi2d 333 . . . 4 (𝑥 = 𝐴 → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹𝐴) ≼ 𝐴)))
21 0ex 5069 . . . . . 6 ∅ ∈ V
22210dom 8445 . . . . 5 ∅ ≼ ∅
2322a1i 11 . . . 4 (𝐹 Fn 𝐴 → ∅ ≼ ∅)
24 fnfun 6288 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → Fun 𝐹)
2524ad2antrl 715 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → Fun 𝐹)
26 funressn 6746 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
27 rnss 5653 . . . . . . . . . . . . 13 ((𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩} → ran (𝐹 ↾ {𝑧}) ⊆ ran {⟨𝑧, (𝐹𝑧)⟩})
2825, 26, 273syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ran (𝐹 ↾ {𝑧}) ⊆ ran {⟨𝑧, (𝐹𝑧)⟩})
29 df-ima 5421 . . . . . . . . . . . 12 (𝐹 “ {𝑧}) = ran (𝐹 ↾ {𝑧})
30 vex 3418 . . . . . . . . . . . . . 14 𝑧 ∈ V
3130rnsnop 5922 . . . . . . . . . . . . 13 ran {⟨𝑧, (𝐹𝑧)⟩} = {(𝐹𝑧)}
3231eqcomi 2787 . . . . . . . . . . . 12 {(𝐹𝑧)} = ran {⟨𝑧, (𝐹𝑧)⟩}
3328, 29, 323sstr4g 3904 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)})
34 snex 5189 . . . . . . . . . . 11 {(𝐹𝑧)} ∈ V
35 ssexg 5084 . . . . . . . . . . 11 (((𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ∈ V) → (𝐹 “ {𝑧}) ∈ V)
3633, 34, 35sylancl 577 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ∈ V)
37 fvi 6570 . . . . . . . . . 10 ((𝐹 “ {𝑧}) ∈ V → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧}))
3836, 37syl 17 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧}))
3938uneq2d 4030 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧})))
40 imaundi 5850 . . . . . . . 8 (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧}))
4139, 40syl6eqr 2832 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = (𝐹 “ (𝑦 ∪ {𝑧})))
42 simprr 760 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹𝑦) ≼ 𝑦)
43 ssdomg 8354 . . . . . . . . . . 11 ({(𝐹𝑧)} ∈ V → ((𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)} → (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)}))
4434, 33, 43mpsyl 68 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)})
45 fvex 6514 . . . . . . . . . . . 12 (𝐹𝑧) ∈ V
4645ensn1 8372 . . . . . . . . . . 11 {(𝐹𝑧)} ≈ 1o
4730ensn1 8372 . . . . . . . . . . 11 {𝑧} ≈ 1o
4846, 47entr4i 8365 . . . . . . . . . 10 {(𝐹𝑧)} ≈ {𝑧}
49 domentr 8367 . . . . . . . . . 10 (((𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≈ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5044, 48, 49sylancl 577 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {𝑧})
5138, 50eqbrtrd 4952 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧})
52 simplr 756 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ¬ 𝑧𝑦)
53 disjsn 4522 . . . . . . . . 9 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
5452, 53sylibr 226 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
55 undom 8403 . . . . . . . 8 ((((𝐹𝑦) ≼ 𝑦 ∧ ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧}))
5642, 51, 54, 55syl21anc 825 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧}))
5741, 56eqbrtrrd 4954 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))
5857exp32 413 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐹 Fn 𝐴 → ((𝐹𝑦) ≼ 𝑦 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
5958a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐹 Fn 𝐴 → (𝐹𝑦) ≼ 𝑦) → (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
608, 12, 16, 20, 23, 59findcard2s 8556 . . 3 (𝐴 ∈ Fin → (𝐹 Fn 𝐴 → (𝐹𝐴) ≼ 𝐴))
61 fofn 6423 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
6260, 61impel 498 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (𝐹𝐴) ≼ 𝐴)
632, 62eqbrtrrd 4954 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  Vcvv 3415  cun 3829  cin 3830  wss 3831  c0 4180  {csn 4442  cop 4448   class class class wbr 4930   I cid 5312  ran crn 5409  cres 5410  cima 5411  Fun wfun 6184   Fn wfn 6185  ontowfo 6188  cfv 6190  1oc1o 7900  cen 8305  cdom 8306  Fincfn 8308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-om 7399  df-1o 7907  df-er 8091  df-en 8309  df-dom 8310  df-fin 8312
This theorem is referenced by:  fodomfib  8595  fofinf1o  8596  fidomdm  8598  fofi  8607  pwfilem  8615  cmpsub  21715  alexsubALT  22366  phpreu  34317  poimirlem26  34359
  Copyright terms: Public domain W3C validator