MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi Structured version   Visualization version   GIF version

Theorem fodomfi 9261
Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodomg 10475 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5320. (Revised by BTernaryTau, 20-Jun-2025.)
Assertion
Ref Expression
fodomfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)

Proof of Theorem fodomfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6777 . . 3 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21adantl 481 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (𝐹𝐴) = 𝐵)
3 imaeq2 6027 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 “ ∅))
4 ima0 6048 . . . . . . 7 (𝐹 “ ∅) = ∅
53, 4eqtrdi 2780 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
6 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
75, 6breq12d 5120 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ≼ 𝑥 ↔ ∅ ≼ ∅))
87imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → ∅ ≼ ∅)))
9 imaeq2 6027 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
10 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10breq12d 5120 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹𝑦) ≼ 𝑦))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹𝑦) ≼ 𝑦)))
13 imaeq2 6027 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 “ (𝑦 ∪ {𝑧})))
14 id 22 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
1513, 14breq12d 5120 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))
1615imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
17 imaeq2 6027 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
18 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
1917, 18breq12d 5120 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹𝐴) ≼ 𝐴))
2019imbi2d 340 . . . 4 (𝑥 = 𝐴 → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹𝐴) ≼ 𝐴)))
21 0ex 5262 . . . . . 6 ∅ ∈ V
22210dom 9071 . . . . 5 ∅ ≼ ∅
2322a1i 11 . . . 4 (𝐹 Fn 𝐴 → ∅ ≼ ∅)
24 fnfun 6618 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → Fun 𝐹)
2524ad2antrl 728 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → Fun 𝐹)
26 funressn 7131 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
27 rnss 5903 . . . . . . . . . . . . 13 ((𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩} → ran (𝐹 ↾ {𝑧}) ⊆ ran {⟨𝑧, (𝐹𝑧)⟩})
2825, 26, 273syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ran (𝐹 ↾ {𝑧}) ⊆ ran {⟨𝑧, (𝐹𝑧)⟩})
29 df-ima 5651 . . . . . . . . . . . 12 (𝐹 “ {𝑧}) = ran (𝐹 ↾ {𝑧})
30 vex 3451 . . . . . . . . . . . . . 14 𝑧 ∈ V
3130rnsnop 6197 . . . . . . . . . . . . 13 ran {⟨𝑧, (𝐹𝑧)⟩} = {(𝐹𝑧)}
3231eqcomi 2738 . . . . . . . . . . . 12 {(𝐹𝑧)} = ran {⟨𝑧, (𝐹𝑧)⟩}
3328, 29, 323sstr4g 4000 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)})
34 snfi 9014 . . . . . . . . . . 11 {(𝐹𝑧)} ∈ Fin
35 ssexg 5278 . . . . . . . . . . 11 (((𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ∈ Fin) → (𝐹 “ {𝑧}) ∈ V)
3633, 34, 35sylancl 586 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ∈ V)
37 fvi 6937 . . . . . . . . . 10 ((𝐹 “ {𝑧}) ∈ V → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧}))
3836, 37syl 17 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧}))
3938uneq2d 4131 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧})))
40 imaundi 6122 . . . . . . . 8 (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧}))
4139, 40eqtr4di 2782 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = (𝐹 “ (𝑦 ∪ {𝑧})))
42 simprr 772 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹𝑦) ≼ 𝑦)
43 ssdomfi 9160 . . . . . . . . . . 11 ({(𝐹𝑧)} ∈ Fin → ((𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)} → (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)}))
4434, 33, 43mpsyl 68 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)})
45 fvex 6871 . . . . . . . . . . 11 (𝐹𝑧) ∈ V
46 en2sn 9012 . . . . . . . . . . 11 (((𝐹𝑧) ∈ V ∧ 𝑧 ∈ V) → {(𝐹𝑧)} ≈ {𝑧})
4745, 30, 46mp2an 692 . . . . . . . . . 10 {(𝐹𝑧)} ≈ {𝑧}
48 endom 8950 . . . . . . . . . . 11 ({(𝐹𝑧)} ≈ {𝑧} → {(𝐹𝑧)} ≼ {𝑧})
49 domtrfi 9157 . . . . . . . . . . . 12 (({(𝐹𝑧)} ∈ Fin ∧ (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≼ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5034, 49mp3an1 1450 . . . . . . . . . . 11 (((𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≼ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5148, 50sylan2 593 . . . . . . . . . 10 (((𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≈ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5244, 47, 51sylancl 586 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {𝑧})
5338, 52eqbrtrd 5129 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧})
54 simplr 768 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ¬ 𝑧𝑦)
55 disjsn 4675 . . . . . . . . 9 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
5654, 55sylibr 234 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
57 undom 9029 . . . . . . . 8 ((((𝐹𝑦) ≼ 𝑦 ∧ ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧}))
5842, 53, 56, 57syl21anc 837 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧}))
5941, 58eqbrtrrd 5131 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))
6059exp32 420 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐹 Fn 𝐴 → ((𝐹𝑦) ≼ 𝑦 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
6160a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐹 Fn 𝐴 → (𝐹𝑦) ≼ 𝑦) → (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
628, 12, 16, 20, 23, 61findcard2s 9129 . . 3 (𝐴 ∈ Fin → (𝐹 Fn 𝐴 → (𝐹𝐴) ≼ 𝐴))
63 fofn 6774 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
6462, 63impel 505 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (𝐹𝐴) ≼ 𝐴)
652, 64eqbrtrrd 5131 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107   I cid 5532  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  cfv 6511  cen 8915  cdom 8916  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  fofi  9262  fodomfib  9280  fodomfibOLD  9282  fofinf1o  9283  fidomdm  9285  cmpsub  23287  alexsubALT  23938  phpreu  37598  poimirlem26  37640  imadomfi  41990
  Copyright terms: Public domain W3C validator