Step | Hyp | Ref
| Expression |
1 | | foima 6677 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
2 | 1 | adantl 481 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → (𝐹 “ 𝐴) = 𝐵) |
3 | | imaeq2 5954 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐹 “ 𝑥) = (𝐹 “ ∅)) |
4 | | ima0 5974 |
. . . . . . 7
⊢ (𝐹 “ ∅) =
∅ |
5 | 3, 4 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐹 “ 𝑥) = ∅) |
6 | | id 22 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝑥 = ∅) |
7 | 5, 6 | breq12d 5083 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ ∅ ≼
∅)) |
8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → ∅ ≼
∅))) |
9 | | imaeq2 5954 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐹 “ 𝑥) = (𝐹 “ 𝑦)) |
10 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
11 | 9, 10 | breq12d 5083 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ (𝐹 “ 𝑦) ≼ 𝑦)) |
12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ 𝑦) ≼ 𝑦))) |
13 | | imaeq2 5954 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 “ 𝑥) = (𝐹 “ (𝑦 ∪ {𝑧}))) |
14 | | id 22 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧})) |
15 | 13, 14 | breq12d 5083 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))) |
16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))) |
17 | | imaeq2 5954 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐹 “ 𝑥) = (𝐹 “ 𝐴)) |
18 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
19 | 17, 18 | breq12d 5083 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐹 “ 𝑥) ≼ 𝑥 ↔ (𝐹 “ 𝐴) ≼ 𝐴)) |
20 | 19 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) ≼ 𝐴))) |
21 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
22 | 21 | 0dom 8843 |
. . . . 5
⊢ ∅
≼ ∅ |
23 | 22 | a1i 11 |
. . . 4
⊢ (𝐹 Fn 𝐴 → ∅ ≼
∅) |
24 | | fnfun 6517 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
25 | 24 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → Fun 𝐹) |
26 | | funressn 7013 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝐹 ↾ {𝑧}) ⊆ {〈𝑧, (𝐹‘𝑧)〉}) |
27 | | rnss 5837 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ {𝑧}) ⊆ {〈𝑧, (𝐹‘𝑧)〉} → ran (𝐹 ↾ {𝑧}) ⊆ ran {〈𝑧, (𝐹‘𝑧)〉}) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ran (𝐹 ↾ {𝑧}) ⊆ ran {〈𝑧, (𝐹‘𝑧)〉}) |
29 | | df-ima 5593 |
. . . . . . . . . . . 12
⊢ (𝐹 “ {𝑧}) = ran (𝐹 ↾ {𝑧}) |
30 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
31 | 30 | rnsnop 6116 |
. . . . . . . . . . . . 13
⊢ ran
{〈𝑧, (𝐹‘𝑧)〉} = {(𝐹‘𝑧)} |
32 | 31 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢ {(𝐹‘𝑧)} = ran {〈𝑧, (𝐹‘𝑧)〉} |
33 | 28, 29, 32 | 3sstr4g 3962 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ⊆ {(𝐹‘𝑧)}) |
34 | | snex 5349 |
. . . . . . . . . . 11
⊢ {(𝐹‘𝑧)} ∈ V |
35 | | ssexg 5242 |
. . . . . . . . . . 11
⊢ (((𝐹 “ {𝑧}) ⊆ {(𝐹‘𝑧)} ∧ {(𝐹‘𝑧)} ∈ V) → (𝐹 “ {𝑧}) ∈ V) |
36 | 33, 34, 35 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ∈ V) |
37 | | fvi 6826 |
. . . . . . . . . 10
⊢ ((𝐹 “ {𝑧}) ∈ V → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧})) |
38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧})) |
39 | 38 | uneq2d 4093 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧}))) |
40 | | imaundi 6042 |
. . . . . . . 8
⊢ (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧})) |
41 | 39, 40 | eqtr4di 2797 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = (𝐹 “ (𝑦 ∪ {𝑧}))) |
42 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ 𝑦) ≼ 𝑦) |
43 | | ssdomg 8741 |
. . . . . . . . . . 11
⊢ ({(𝐹‘𝑧)} ∈ V → ((𝐹 “ {𝑧}) ⊆ {(𝐹‘𝑧)} → (𝐹 “ {𝑧}) ≼ {(𝐹‘𝑧)})) |
44 | 34, 33, 43 | mpsyl 68 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {(𝐹‘𝑧)}) |
45 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑧) ∈ V |
46 | 45 | ensn1 8761 |
. . . . . . . . . . 11
⊢ {(𝐹‘𝑧)} ≈ 1o |
47 | 30 | ensn1 8761 |
. . . . . . . . . . 11
⊢ {𝑧} ≈
1o |
48 | 46, 47 | entr4i 8752 |
. . . . . . . . . 10
⊢ {(𝐹‘𝑧)} ≈ {𝑧} |
49 | | domentr 8754 |
. . . . . . . . . 10
⊢ (((𝐹 “ {𝑧}) ≼ {(𝐹‘𝑧)} ∧ {(𝐹‘𝑧)} ≈ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧}) |
50 | 44, 48, 49 | sylancl 585 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {𝑧}) |
51 | 38, 50 | eqbrtrd 5092 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) |
52 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
53 | | disjsn 4644 |
. . . . . . . . 9
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
54 | 52, 53 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
55 | | undom 8800 |
. . . . . . . 8
⊢ ((((𝐹 “ 𝑦) ≼ 𝑦 ∧ ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧})) |
56 | 42, 51, 54, 55 | syl21anc 834 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → ((𝐹 “ 𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧})) |
57 | 41, 56 | eqbrtrrd 5094 |
. . . . . 6
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹 “ 𝑦) ≼ 𝑦)) → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})) |
58 | 57 | exp32 420 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝐹 Fn 𝐴 → ((𝐹 “ 𝑦) ≼ 𝑦 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))) |
59 | 58 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝐹 Fn 𝐴 → (𝐹 “ 𝑦) ≼ 𝑦) → (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))) |
60 | 8, 12, 16, 20, 23, 59 | findcard2s 8910 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) ≼ 𝐴)) |
61 | | fofn 6674 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
62 | 60, 61 | impel 505 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → (𝐹 “ 𝐴) ≼ 𝐴) |
63 | 2, 62 | eqbrtrrd 5094 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) |