MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi Structured version   Visualization version   GIF version

Theorem fodomfi 9348
Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodomg 10560 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5371. (Revised by BTernaryTau, 20-Jun-2025.)
Assertion
Ref Expression
fodomfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)

Proof of Theorem fodomfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6826 . . 3 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
21adantl 481 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (𝐹𝐴) = 𝐵)
3 imaeq2 6076 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 “ ∅))
4 ima0 6097 . . . . . . 7 (𝐹 “ ∅) = ∅
53, 4eqtrdi 2791 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
6 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
75, 6breq12d 5161 . . . . 5 (𝑥 = ∅ → ((𝐹𝑥) ≼ 𝑥 ↔ ∅ ≼ ∅))
87imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → ∅ ≼ ∅)))
9 imaeq2 6076 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
10 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10breq12d 5161 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹𝑦) ≼ 𝑦))
1211imbi2d 340 . . . 4 (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹𝑦) ≼ 𝑦)))
13 imaeq2 6076 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 “ (𝑦 ∪ {𝑧})))
14 id 22 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
1513, 14breq12d 5161 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧})))
1615imbi2d 340 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
17 imaeq2 6076 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
18 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
1917, 18breq12d 5161 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) ≼ 𝑥 ↔ (𝐹𝐴) ≼ 𝐴))
2019imbi2d 340 . . . 4 (𝑥 = 𝐴 → ((𝐹 Fn 𝐴 → (𝐹𝑥) ≼ 𝑥) ↔ (𝐹 Fn 𝐴 → (𝐹𝐴) ≼ 𝐴)))
21 0ex 5313 . . . . . 6 ∅ ∈ V
22210dom 9145 . . . . 5 ∅ ≼ ∅
2322a1i 11 . . . 4 (𝐹 Fn 𝐴 → ∅ ≼ ∅)
24 fnfun 6669 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → Fun 𝐹)
2524ad2antrl 728 . . . . . . . . . . . . 13 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → Fun 𝐹)
26 funressn 7179 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩})
27 rnss 5953 . . . . . . . . . . . . 13 ((𝐹 ↾ {𝑧}) ⊆ {⟨𝑧, (𝐹𝑧)⟩} → ran (𝐹 ↾ {𝑧}) ⊆ ran {⟨𝑧, (𝐹𝑧)⟩})
2825, 26, 273syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ran (𝐹 ↾ {𝑧}) ⊆ ran {⟨𝑧, (𝐹𝑧)⟩})
29 df-ima 5702 . . . . . . . . . . . 12 (𝐹 “ {𝑧}) = ran (𝐹 ↾ {𝑧})
30 vex 3482 . . . . . . . . . . . . . 14 𝑧 ∈ V
3130rnsnop 6246 . . . . . . . . . . . . 13 ran {⟨𝑧, (𝐹𝑧)⟩} = {(𝐹𝑧)}
3231eqcomi 2744 . . . . . . . . . . . 12 {(𝐹𝑧)} = ran {⟨𝑧, (𝐹𝑧)⟩}
3328, 29, 323sstr4g 4041 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)})
34 snfi 9082 . . . . . . . . . . 11 {(𝐹𝑧)} ∈ Fin
35 ssexg 5329 . . . . . . . . . . 11 (((𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ∈ Fin) → (𝐹 “ {𝑧}) ∈ V)
3633, 34, 35sylancl 586 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ∈ V)
37 fvi 6985 . . . . . . . . . 10 ((𝐹 “ {𝑧}) ∈ V → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧}))
3836, 37syl 17 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) = (𝐹 “ {𝑧}))
3938uneq2d 4178 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧})))
40 imaundi 6172 . . . . . . . 8 (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧}))
4139, 40eqtr4di 2793 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) = (𝐹 “ (𝑦 ∪ {𝑧})))
42 simprr 773 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹𝑦) ≼ 𝑦)
43 ssdomfi 9234 . . . . . . . . . . 11 ({(𝐹𝑧)} ∈ Fin → ((𝐹 “ {𝑧}) ⊆ {(𝐹𝑧)} → (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)}))
4434, 33, 43mpsyl 68 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)})
45 fvex 6920 . . . . . . . . . . 11 (𝐹𝑧) ∈ V
46 en2sn 9080 . . . . . . . . . . 11 (((𝐹𝑧) ∈ V ∧ 𝑧 ∈ V) → {(𝐹𝑧)} ≈ {𝑧})
4745, 30, 46mp2an 692 . . . . . . . . . 10 {(𝐹𝑧)} ≈ {𝑧}
48 endom 9018 . . . . . . . . . . 11 ({(𝐹𝑧)} ≈ {𝑧} → {(𝐹𝑧)} ≼ {𝑧})
49 domtrfi 9231 . . . . . . . . . . . 12 (({(𝐹𝑧)} ∈ Fin ∧ (𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≼ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5034, 49mp3an1 1447 . . . . . . . . . . 11 (((𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≼ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5148, 50sylan2 593 . . . . . . . . . 10 (((𝐹 “ {𝑧}) ≼ {(𝐹𝑧)} ∧ {(𝐹𝑧)} ≈ {𝑧}) → (𝐹 “ {𝑧}) ≼ {𝑧})
5244, 47, 51sylancl 586 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ {𝑧}) ≼ {𝑧})
5338, 52eqbrtrd 5170 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧})
54 simplr 769 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ¬ 𝑧𝑦)
55 disjsn 4716 . . . . . . . . 9 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
5654, 55sylibr 234 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
57 undom 9098 . . . . . . . 8 ((((𝐹𝑦) ≼ 𝑦 ∧ ( I ‘(𝐹 “ {𝑧})) ≼ {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧}))
5842, 53, 56, 57syl21anc 838 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → ((𝐹𝑦) ∪ ( I ‘(𝐹 “ {𝑧}))) ≼ (𝑦 ∪ {𝑧}))
5941, 58eqbrtrrd 5172 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝐹 Fn 𝐴 ∧ (𝐹𝑦) ≼ 𝑦)) → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))
6059exp32 420 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐹 Fn 𝐴 → ((𝐹𝑦) ≼ 𝑦 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
6160a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐹 Fn 𝐴 → (𝐹𝑦) ≼ 𝑦) → (𝐹 Fn 𝐴 → (𝐹 “ (𝑦 ∪ {𝑧})) ≼ (𝑦 ∪ {𝑧}))))
628, 12, 16, 20, 23, 61findcard2s 9204 . . 3 (𝐴 ∈ Fin → (𝐹 Fn 𝐴 → (𝐹𝐴) ≼ 𝐴))
63 fofn 6823 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
6462, 63impel 505 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (𝐹𝐴) ≼ 𝐴)
652, 64eqbrtrrd 5172 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  cop 4637   class class class wbr 5148   I cid 5582  ran crn 5690  cres 5691  cima 5692  Fun wfun 6557   Fn wfn 6558  ontowfo 6561  cfv 6563  cen 8981  cdom 8982  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by:  fofi  9349  fodomfib  9367  fodomfibOLD  9369  fofinf1o  9370  fidomdm  9372  cmpsub  23424  alexsubALT  24075  phpreu  37591  poimirlem26  37633  imadomfi  41984
  Copyright terms: Public domain W3C validator