MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi1lem2 Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi1lem2 22730
Description: Lemma 2 for pmatcollpw3fi1 22731. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3fi1lem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑓 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐵,𝑠,𝑛   𝐶,𝑛   𝑀,𝑠   𝑁,𝑠   𝑅,𝑠   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓,𝑠   𝐷,𝑛   𝐴,𝑓,𝑛,𝑠   𝐶,𝑠   𝐷,𝑠   𝑇,𝑠   𝑋,𝑠   ,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑓,𝑠)   𝑇(𝑛)   (𝑛)

Proof of Theorem pmatcollpw3fi1lem2
Dummy variables 𝑙 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6880 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
21fveq2d 6885 . . . . . . 7 (𝑓 = 𝑔 → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑔𝑛)))
32oveq2d 7426 . . . . . 6 (𝑓 = 𝑔 → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))
43mpteq2dv 5220 . . . . 5 (𝑓 = 𝑔 → (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))
54oveq2d 7426 . . . 4 (𝑓 = 𝑔 → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))))
65eqeq2d 2747 . . 3 (𝑓 = 𝑔 → (𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))))
76cbvrexvw 3225 . 2 (∃𝑓 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ ∃𝑔 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))))
8 crngring 20210 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98anim2i 617 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1093adant3 1132 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1110ad2antrr 726 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
12 simplr 768 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑔 ∈ (𝐷m {0}))
13 simpr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))))
14 pmatcollpw.p . . . . . 6 𝑃 = (Poly1𝑅)
15 pmatcollpw.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
16 pmatcollpw.b . . . . . 6 𝐵 = (Base‘𝐶)
17 pmatcollpw.m . . . . . 6 = ( ·𝑠𝐶)
18 pmatcollpw.e . . . . . 6 = (.g‘(mulGrp‘𝑃))
19 pmatcollpw.x . . . . . 6 𝑋 = (var1𝑅)
20 pmatcollpw.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
21 pmatcollpw3.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
22 pmatcollpw3.d . . . . . 6 𝐷 = (Base‘𝐴)
23 eqid 2736 . . . . . 6 (0g𝐴) = (0g𝐴)
24 eqid 2736 . . . . . 6 (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))
2514, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24pmatcollpw3fi1lem1 22729 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑔 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))))
2611, 12, 13, 25syl3anc 1373 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))))
27 1nn 12256 . . . . . 6 1 ∈ ℕ
2827a1i 11 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) → 1 ∈ ℕ)
29 oveq2 7418 . . . . . . . 8 (𝑠 = 1 → (0...𝑠) = (0...1))
3029oveq2d 7426 . . . . . . 7 (𝑠 = 1 → (𝐷m (0...𝑠)) = (𝐷m (0...1)))
3129mpteq1d 5215 . . . . . . . . 9 (𝑠 = 1 → (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))
3231oveq2d 7426 . . . . . . . 8 (𝑠 = 1 → (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
3332eqeq2d 2747 . . . . . . 7 (𝑠 = 1 → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
3430, 33rexeqbidv 3330 . . . . . 6 (𝑠 = 1 → (∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
3534adantl 481 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) ∧ 𝑠 = 1) → (∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
36 elmapi 8868 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝐷m {0}) → 𝑔:{0}⟶𝐷)
37 c0ex 11234 . . . . . . . . . . . . . . . . . 18 0 ∈ V
3837snid 4643 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
3938a1i 11 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...1) → 0 ∈ {0})
40 ffvelcdm 7076 . . . . . . . . . . . . . . . 16 ((𝑔:{0}⟶𝐷 ∧ 0 ∈ {0}) → (𝑔‘0) ∈ 𝐷)
4139, 40sylan2 593 . . . . . . . . . . . . . . 15 ((𝑔:{0}⟶𝐷𝑙 ∈ (0...1)) → (𝑔‘0) ∈ 𝐷)
4241ex 412 . . . . . . . . . . . . . 14 (𝑔:{0}⟶𝐷 → (𝑙 ∈ (0...1) → (𝑔‘0) ∈ 𝐷))
4336, 42syl 17 . . . . . . . . . . . . 13 (𝑔 ∈ (𝐷m {0}) → (𝑙 ∈ (0...1) → (𝑔‘0) ∈ 𝐷))
4443adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → (𝑙 ∈ (0...1) → (𝑔‘0) ∈ 𝐷))
4544imp 406 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (𝑔‘0) ∈ 𝐷)
4621matring 22386 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
478, 46sylan2 593 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
48473adant3 1132 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
4922, 23ring0cl 20232 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → (0g𝐴) ∈ 𝐷)
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0g𝐴) ∈ 𝐷)
5150ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (0g𝐴) ∈ 𝐷)
5245, 51ifcld 4552 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → if(𝑙 = 0, (𝑔‘0), (0g𝐴)) ∈ 𝐷)
5352fmpttd 7110 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))):(0...1)⟶𝐷)
5422fvexi 6895 . . . . . . . . . . 11 𝐷 ∈ V
55 ovex 7443 . . . . . . . . . . 11 (0...1) ∈ V
5654, 55pm3.2i 470 . . . . . . . . . 10 (𝐷 ∈ V ∧ (0...1) ∈ V)
57 elmapg 8858 . . . . . . . . . 10 ((𝐷 ∈ V ∧ (0...1) ∈ V) → ((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)) ↔ (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))):(0...1)⟶𝐷))
5856, 57mp1i 13 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → ((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)) ↔ (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))):(0...1)⟶𝐷))
5953, 58mpbird 257 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)))
6059adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)))
61 fveq1 6880 . . . . . . . . . . . . 13 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑓𝑛) = ((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))
6261fveq2d 6885 . . . . . . . . . . . 12 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑇‘(𝑓𝑛)) = (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))
6362oveq2d 7426 . . . . . . . . . . 11 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))
6463mpteq2dv 5220 . . . . . . . . . 10 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))
6564oveq2d 7426 . . . . . . . . 9 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))))
6665eqeq2d 2747 . . . . . . . 8 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))))
6766adantl 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))))
6860, 67rspcedv 3599 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))) → ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
6968imp 406 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) → ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
7028, 35, 69rspcedvd 3608 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
7126, 70mpdan 687 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
7271rexlimdva2 3144 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑔 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
737, 72biimtrid 242 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑓 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  ifcif 4505  {csn 4606  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Fincfn 8964  0cc0 11134  1c1 11135  cn 12245  ...cfz 13529  Basecbs 17233   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  .gcmg 19055  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199  var1cv1 22116  Poly1cpl1 22117   Mat cmat 22350   matToPolyMat cmat2pmat 22647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-mamu 22334  df-mat 22351  df-mat2pmat 22650
This theorem is referenced by:  pmatcollpw3fi1  22731
  Copyright terms: Public domain W3C validator