Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3fi1lem2 Structured version   Visualization version   GIF version

Theorem pmatcollpw3fi1lem2 21492
 Description: Lemma 2 for pmatcollpw3fi1 21493. (Contributed by AV, 6-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p 𝑃 = (Poly1𝑅)
pmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw.b 𝐵 = (Base‘𝐶)
pmatcollpw.m = ( ·𝑠𝐶)
pmatcollpw.e = (.g‘(mulGrp‘𝑃))
pmatcollpw.x 𝑋 = (var1𝑅)
pmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
pmatcollpw3.a 𝐴 = (𝑁 Mat 𝑅)
pmatcollpw3.d 𝐷 = (Base‘𝐴)
Assertion
Ref Expression
pmatcollpw3fi1lem2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑓 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑛,𝑋   ,𝑛   𝐵,𝑠,𝑛   𝐶,𝑛   𝑀,𝑠   𝑁,𝑠   𝑅,𝑠   𝐵,𝑓   𝐶,𝑓,𝑛   𝐷,𝑓   𝑓,𝑀   𝑓,𝑁   𝑅,𝑓   𝑇,𝑓   𝑓,𝑋   ,𝑓   ,𝑓,𝑠   𝐷,𝑛   𝐴,𝑓,𝑛,𝑠   𝐶,𝑠   𝐷,𝑠   𝑇,𝑠   𝑋,𝑠   ,𝑠   ,𝑠
Allowed substitution hints:   𝑃(𝑓,𝑠)   𝑇(𝑛)   (𝑛)

Proof of Theorem pmatcollpw3fi1lem2
Dummy variables 𝑙 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6661 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
21fveq2d 6666 . . . . . . 7 (𝑓 = 𝑔 → (𝑇‘(𝑓𝑛)) = (𝑇‘(𝑔𝑛)))
32oveq2d 7171 . . . . . 6 (𝑓 = 𝑔 → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))
43mpteq2dv 5131 . . . . 5 (𝑓 = 𝑔 → (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))
54oveq2d 7171 . . . 4 (𝑓 = 𝑔 → (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))))
65eqeq2d 2769 . . 3 (𝑓 = 𝑔 → (𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))))
76cbvrexvw 3362 . 2 (∃𝑓 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ ∃𝑔 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))))
8 crngring 19382 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98anim2i 619 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1093adant3 1129 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1110ad2antrr 725 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
12 simplr 768 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑔 ∈ (𝐷m {0}))
13 simpr 488 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))))
14 pmatcollpw.p . . . . . 6 𝑃 = (Poly1𝑅)
15 pmatcollpw.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
16 pmatcollpw.b . . . . . 6 𝐵 = (Base‘𝐶)
17 pmatcollpw.m . . . . . 6 = ( ·𝑠𝐶)
18 pmatcollpw.e . . . . . 6 = (.g‘(mulGrp‘𝑃))
19 pmatcollpw.x . . . . . 6 𝑋 = (var1𝑅)
20 pmatcollpw.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
21 pmatcollpw3.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
22 pmatcollpw3.d . . . . . 6 𝐷 = (Base‘𝐴)
23 eqid 2758 . . . . . 6 (0g𝐴) = (0g𝐴)
24 eqid 2758 . . . . . 6 (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))
2514, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24pmatcollpw3fi1lem1 21491 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑔 ∈ (𝐷m {0}) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))))
2611, 12, 13, 25syl3anc 1368 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))))
27 1nn 11690 . . . . . 6 1 ∈ ℕ
2827a1i 11 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) → 1 ∈ ℕ)
29 oveq2 7163 . . . . . . . 8 (𝑠 = 1 → (0...𝑠) = (0...1))
3029oveq2d 7171 . . . . . . 7 (𝑠 = 1 → (𝐷m (0...𝑠)) = (𝐷m (0...1)))
3129mpteq1d 5124 . . . . . . . . 9 (𝑠 = 1 → (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))
3231oveq2d 7171 . . . . . . . 8 (𝑠 = 1 → (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
3332eqeq2d 2769 . . . . . . 7 (𝑠 = 1 → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
3430, 33rexeqbidv 3320 . . . . . 6 (𝑠 = 1 → (∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
3534adantl 485 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) ∧ 𝑠 = 1) → (∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
36 elmapi 8443 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝐷m {0}) → 𝑔:{0}⟶𝐷)
37 c0ex 10678 . . . . . . . . . . . . . . . . . 18 0 ∈ V
3837snid 4561 . . . . . . . . . . . . . . . . 17 0 ∈ {0}
3938a1i 11 . . . . . . . . . . . . . . . 16 (𝑙 ∈ (0...1) → 0 ∈ {0})
40 ffvelrn 6845 . . . . . . . . . . . . . . . 16 ((𝑔:{0}⟶𝐷 ∧ 0 ∈ {0}) → (𝑔‘0) ∈ 𝐷)
4139, 40sylan2 595 . . . . . . . . . . . . . . 15 ((𝑔:{0}⟶𝐷𝑙 ∈ (0...1)) → (𝑔‘0) ∈ 𝐷)
4241ex 416 . . . . . . . . . . . . . 14 (𝑔:{0}⟶𝐷 → (𝑙 ∈ (0...1) → (𝑔‘0) ∈ 𝐷))
4336, 42syl 17 . . . . . . . . . . . . 13 (𝑔 ∈ (𝐷m {0}) → (𝑙 ∈ (0...1) → (𝑔‘0) ∈ 𝐷))
4443adantl 485 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → (𝑙 ∈ (0...1) → (𝑔‘0) ∈ 𝐷))
4544imp 410 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (𝑔‘0) ∈ 𝐷)
4621matring 21148 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
478, 46sylan2 595 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
48473adant3 1129 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐴 ∈ Ring)
4922, 23ring0cl 19395 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → (0g𝐴) ∈ 𝐷)
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (0g𝐴) ∈ 𝐷)
5150ad2antrr 725 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → (0g𝐴) ∈ 𝐷)
5245, 51ifcld 4469 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑙 ∈ (0...1)) → if(𝑙 = 0, (𝑔‘0), (0g𝐴)) ∈ 𝐷)
5352fmpttd 6875 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))):(0...1)⟶𝐷)
5422fvexi 6676 . . . . . . . . . . 11 𝐷 ∈ V
55 ovex 7188 . . . . . . . . . . 11 (0...1) ∈ V
5654, 55pm3.2i 474 . . . . . . . . . 10 (𝐷 ∈ V ∧ (0...1) ∈ V)
57 elmapg 8434 . . . . . . . . . 10 ((𝐷 ∈ V ∧ (0...1) ∈ V) → ((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)) ↔ (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))):(0...1)⟶𝐷))
5856, 57mp1i 13 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → ((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)) ↔ (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))):(0...1)⟶𝐷))
5953, 58mpbird 260 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) → (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)))
6059adantr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) ∈ (𝐷m (0...1)))
61 fveq1 6661 . . . . . . . . . . . . 13 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑓𝑛) = ((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))
6261fveq2d 6666 . . . . . . . . . . . 12 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑇‘(𝑓𝑛)) = (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))
6362oveq2d 7171 . . . . . . . . . . 11 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → ((𝑛 𝑋) (𝑇‘(𝑓𝑛))) = ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))
6463mpteq2dv 5131 . . . . . . . . . 10 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))) = (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))
6564oveq2d 7171 . . . . . . . . 9 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))))
6665eqeq2d 2769 . . . . . . . 8 (𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴))) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))))
6766adantl 485 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑓 = (𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) ↔ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))))
6860, 67rspcedv 3536 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → (𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛))))) → ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
6968imp 410 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) → ∃𝑓 ∈ (𝐷m (0...1))𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
7028, 35, 69rspcedvd 3546 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ (0...1) ↦ ((𝑛 𝑋) (𝑇‘((𝑙 ∈ (0...1) ↦ if(𝑙 = 0, (𝑔‘0), (0g𝐴)))‘𝑛)))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
7126, 70mpdan 686 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑔 ∈ (𝐷m {0})) ∧ 𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛)))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))))
7271rexlimdva2 3211 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑔 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑔𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
737, 72syl5bi 245 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑓 ∈ (𝐷m {0})𝑀 = (𝐶 Σg (𝑛 ∈ {0} ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛))))) → ∃𝑠 ∈ ℕ ∃𝑓 ∈ (𝐷m (0...𝑠))𝑀 = (𝐶 Σg (𝑛 ∈ (0...𝑠) ↦ ((𝑛 𝑋) (𝑇‘(𝑓𝑛)))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3071  Vcvv 3409  ifcif 4423  {csn 4525   ↦ cmpt 5115  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155   ↑m cmap 8421  Fincfn 8532  0cc0 10580  1c1 10581  ℕcn 11679  ...cfz 12944  Basecbs 16546   ·𝑠 cvsca 16632  0gc0g 16776   Σg cgsu 16777  .gcmg 18296  mulGrpcmgp 19312  Ringcrg 19370  CRingccrg 19371  var1cv1 20905  Poly1cpl1 20906   Mat cmat 21112   matToPolyMat cmat2pmat 21409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-hom 16652  df-cco 16653  df-0g 16778  df-gsum 16779  df-prds 16784  df-pws 16786  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-grp 18177  df-minusg 18178  df-sbg 18179  df-mulg 18297  df-subg 18348  df-ghm 18428  df-cntz 18519  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-cring 19373  df-subrg 19606  df-lmod 19709  df-lss 19777  df-sra 20017  df-rgmod 20018  df-dsmm 20502  df-frlm 20517  df-ascl 20625  df-psr 20676  df-mvr 20677  df-mpl 20678  df-opsr 20680  df-psr1 20909  df-vr1 20910  df-ply1 20911  df-mamu 21091  df-mat 21113  df-mat2pmat 21412 This theorem is referenced by:  pmatcollpw3fi1  21493
 Copyright terms: Public domain W3C validator