Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb1 Structured version   Visualization version   GIF version

Theorem affinecomb1 45936
Description: Combination of two real affine combinations, one class variable resolved. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
affinecomb1.s 𝑆 = ((𝐺𝐹) / (𝐶𝐵))
Assertion
Ref Expression
affinecomb1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝑆
Allowed substitution hint:   𝐺(𝑡)

Proof of Theorem affinecomb1
StepHypRef Expression
1 affinecomb1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℝ)
32recnd 10934 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
4 affinecomb1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝐵 ∈ ℝ)
65recnd 10934 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐵 ∈ ℂ)
7 affinecomb1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
87adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝐶 ∈ ℝ)
98recnd 10934 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐶 ∈ ℂ)
10 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
1110recnd 10934 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
12 affinecomb1.d . . . . . . 7 (𝜑𝐵𝐶)
1312adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐵𝐶)
143, 6, 9, 11, 13affineequivne 25882 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ↔ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))))
15 oveq2 7263 . . . . . . . . . . 11 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (1 − 𝑡) = (1 − ((𝐴𝐵) / (𝐶𝐵))))
1615oveq1d 7270 . . . . . . . . . 10 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → ((1 − 𝑡) · 𝐹) = ((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹))
17 oveq1 7262 . . . . . . . . . 10 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 · 𝐺) = (((𝐴𝐵) / (𝐶𝐵)) · 𝐺))
1816, 17oveq12d 7273 . . . . . . . . 9 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)))
1918eqeq2d 2749 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ 𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺))))
2019adantl 481 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ 𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺))))
21 eqidd 2739 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹))
221, 4resubcld 11333 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ∈ ℝ)
237, 4resubcld 11333 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐵) ∈ ℝ)
247recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶 ∈ ℂ)
254recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℂ)
2612necomd 2998 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶𝐵)
2724, 25, 26subne0d 11271 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐵) ≠ 0)
2822, 23, 27redivcld 11733 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ)
29 affinecomb1.g . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ ℝ)
30 affinecomb1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ ℝ)
3129, 30resubcld 11333 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝐹) ∈ ℝ)
3228, 31remulcld 10936 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) ∈ ℝ)
3332, 30readdcld 10935 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) ∈ ℝ)
3433recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) ∈ ℂ)
3530recnd 10934 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℂ)
3629recnd 10934 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ ℂ)
3728recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐵) / (𝐶𝐵)) ∈ ℂ)
3834, 35, 36, 37affineequiv4 25881 . . . . . . . . . . . . 13 (𝜑 → (((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) ↔ ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹)))
3921, 38mpbird 256 . . . . . . . . . . . 12 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)))
4022recnd 10934 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ∈ ℂ)
4123recnd 10934 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐵) ∈ ℂ)
4231recnd 10934 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐹) ∈ ℂ)
4340, 41, 42, 27div13d 11705 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)))
44 affinecomb1.s . . . . . . . . . . . . . . 15 𝑆 = ((𝐺𝐹) / (𝐶𝐵))
4544oveq1i 7265 . . . . . . . . . . . . . 14 (𝑆 · (𝐴𝐵)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))
4643, 45eqtr4di 2797 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) = (𝑆 · (𝐴𝐵)))
4746oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = ((𝑆 · (𝐴𝐵)) + 𝐹))
4839, 47eqtr3d 2780 . . . . . . . . . . 11 (𝜑 → (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) = ((𝑆 · (𝐴𝐵)) + 𝐹))
4948adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) = ((𝑆 · (𝐴𝐵)) + 𝐹))
5049eqeq2d 2749 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5150biimpd 228 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5251adantr 480 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5320, 52sylbid 239 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5453ex 412 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹))))
5514, 54sylbid 239 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹))))
5655impd 410 . . 3 ((𝜑𝑡 ∈ ℝ) → ((𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5756rexlimdva 3212 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
58 affinecomb1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ)
5958adantr 480 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐸 ∈ ℝ)
6059recnd 10934 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐸 ∈ ℂ)
6135adantr 480 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐹 ∈ ℂ)
6236adantr 480 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐺 ∈ ℂ)
6328adantr 480 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ)
64 eleq1 2826 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 ∈ ℝ ↔ ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ))
6564adantl 481 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑡 ∈ ℝ ↔ ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ))
6663, 65mpbird 256 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝑡 ∈ ℝ)
6766recnd 10934 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝑡 ∈ ℂ)
6860, 61, 62, 67affineequiv4 25881 . . . 4 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ 𝐸 = ((𝑡 · (𝐺𝐹)) + 𝐹)))
6915oveq1d 7270 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → ((1 − 𝑡) · 𝐵) = ((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵))
70 oveq1 7262 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 · 𝐶) = (((𝐴𝐵) / (𝐶𝐵)) · 𝐶))
7169, 70oveq12d 7273 . . . . . . 7 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)))
72 eqidd 2739 . . . . . . . . 9 (𝜑 → ((𝐴𝐵) / (𝐶𝐵)) = ((𝐴𝐵) / (𝐶𝐵)))
731recnd 10934 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
7473, 25, 24, 37, 12affineequivne 25882 . . . . . . . . 9 (𝜑 → (𝐴 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)) ↔ ((𝐴𝐵) / (𝐶𝐵)) = ((𝐴𝐵) / (𝐶𝐵))))
7572, 74mpbird 256 . . . . . . . 8 (𝜑𝐴 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)))
7675eqcomd 2744 . . . . . . 7 (𝜑 → (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)) = 𝐴)
7771, 76sylan9eqr 2801 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) = 𝐴)
7877eqcomd 2744 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)))
7978biantrurd 532 . . . 4 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)))))
8043adantr 480 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)))
81 oveq1 7262 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 · (𝐺𝐹)) = (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)))
8281adantl 481 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑡 · (𝐺𝐹)) = (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)))
8345a1i 11 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑆 · (𝐴𝐵)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)))
8480, 82, 833eqtr4d 2788 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑡 · (𝐺𝐹)) = (𝑆 · (𝐴𝐵)))
8584oveq1d 7270 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → ((𝑡 · (𝐺𝐹)) + 𝐹) = ((𝑆 · (𝐴𝐵)) + 𝐹))
8685eqeq2d 2749 . . . 4 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = ((𝑡 · (𝐺𝐹)) + 𝐹) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
8768, 79, 863bitr3d 308 . . 3 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → ((𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
8828, 87rspcedv 3544 . 2 (𝜑 → (𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹) → ∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)))))
8957, 88impbid 211 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  affinecomb2  45937  rrx2linesl  45977
  Copyright terms: Public domain W3C validator