Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  affinecomb1 Structured version   Visualization version   GIF version

Theorem affinecomb1 48691
Description: Combination of two real affine combinations, one class variable resolved. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affinecomb1.a (𝜑𝐴 ∈ ℝ)
affinecomb1.b (𝜑𝐵 ∈ ℝ)
affinecomb1.c (𝜑𝐶 ∈ ℝ)
affinecomb1.d (𝜑𝐵𝐶)
affinecomb1.e (𝜑𝐸 ∈ ℝ)
affinecomb1.f (𝜑𝐹 ∈ ℝ)
affinecomb1.g (𝜑𝐺 ∈ ℝ)
affinecomb1.s 𝑆 = ((𝐺𝐹) / (𝐶𝐵))
Assertion
Ref Expression
affinecomb1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐶   𝑡,𝐸   𝑡,𝐹   𝜑,𝑡   𝑡,𝑆
Allowed substitution hint:   𝐺(𝑡)

Proof of Theorem affinecomb1
StepHypRef Expression
1 affinecomb1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℝ)
32recnd 11202 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
4 affinecomb1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝐵 ∈ ℝ)
65recnd 11202 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐵 ∈ ℂ)
7 affinecomb1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
87adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝐶 ∈ ℝ)
98recnd 11202 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐶 ∈ ℂ)
10 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
1110recnd 11202 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
12 affinecomb1.d . . . . . . 7 (𝜑𝐵𝐶)
1312adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐵𝐶)
143, 6, 9, 11, 13affineequivne 26737 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ↔ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))))
15 oveq2 7395 . . . . . . . . . . 11 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (1 − 𝑡) = (1 − ((𝐴𝐵) / (𝐶𝐵))))
1615oveq1d 7402 . . . . . . . . . 10 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → ((1 − 𝑡) · 𝐹) = ((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹))
17 oveq1 7394 . . . . . . . . . 10 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 · 𝐺) = (((𝐴𝐵) / (𝐶𝐵)) · 𝐺))
1816, 17oveq12d 7405 . . . . . . . . 9 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)))
1918eqeq2d 2740 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ 𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺))))
2019adantl 481 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ 𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺))))
21 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹))
221, 4resubcld 11606 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐵) ∈ ℝ)
237, 4resubcld 11606 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐵) ∈ ℝ)
247recnd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶 ∈ ℂ)
254recnd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℂ)
2612necomd 2980 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶𝐵)
2724, 25, 26subne0d 11542 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶𝐵) ≠ 0)
2822, 23, 27redivcld 12010 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ)
29 affinecomb1.g . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ ℝ)
30 affinecomb1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ ℝ)
3129, 30resubcld 11606 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝐹) ∈ ℝ)
3228, 31remulcld 11204 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) ∈ ℝ)
3332, 30readdcld 11203 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) ∈ ℝ)
3433recnd 11202 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) ∈ ℂ)
3530recnd 11202 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℂ)
3629recnd 11202 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ ℂ)
3728recnd 11202 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐵) / (𝐶𝐵)) ∈ ℂ)
3834, 35, 36, 37affineequiv4 26736 . . . . . . . . . . . . 13 (𝜑 → (((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) ↔ ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹)))
3921, 38mpbird 257 . . . . . . . . . . . 12 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)))
4022recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ∈ ℂ)
4123recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐵) ∈ ℂ)
4231recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐹) ∈ ℂ)
4340, 41, 42, 27div13d 11982 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)))
44 affinecomb1.s . . . . . . . . . . . . . . 15 𝑆 = ((𝐺𝐹) / (𝐶𝐵))
4544oveq1i 7397 . . . . . . . . . . . . . 14 (𝑆 · (𝐴𝐵)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵))
4643, 45eqtr4di 2782 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) = (𝑆 · (𝐴𝐵)))
4746oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) + 𝐹) = ((𝑆 · (𝐴𝐵)) + 𝐹))
4839, 47eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) = ((𝑆 · (𝐴𝐵)) + 𝐹))
4948adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) = ((𝑆 · (𝐴𝐵)) + 𝐹))
5049eqeq2d 2740 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → (𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5150biimpd 229 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → (𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5251adantr 480 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐹) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5320, 52sylbid 240 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5453ex 412 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹))))
5514, 54sylbid 240 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹))))
5655impd 410 . . 3 ((𝜑𝑡 ∈ ℝ) → ((𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
5756rexlimdva 3134 . 2 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) → 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
58 affinecomb1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ)
5958adantr 480 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐸 ∈ ℝ)
6059recnd 11202 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐸 ∈ ℂ)
6135adantr 480 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐹 ∈ ℂ)
6236adantr 480 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐺 ∈ ℂ)
6328adantr 480 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ)
64 eleq1 2816 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 ∈ ℝ ↔ ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ))
6564adantl 481 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑡 ∈ ℝ ↔ ((𝐴𝐵) / (𝐶𝐵)) ∈ ℝ))
6663, 65mpbird 257 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝑡 ∈ ℝ)
6766recnd 11202 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝑡 ∈ ℂ)
6860, 61, 62, 67affineequiv4 26736 . . . 4 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ 𝐸 = ((𝑡 · (𝐺𝐹)) + 𝐹)))
6915oveq1d 7402 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → ((1 − 𝑡) · 𝐵) = ((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵))
70 oveq1 7394 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 · 𝐶) = (((𝐴𝐵) / (𝐶𝐵)) · 𝐶))
7169, 70oveq12d 7405 . . . . . . 7 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)))
72 eqidd 2730 . . . . . . . . 9 (𝜑 → ((𝐴𝐵) / (𝐶𝐵)) = ((𝐴𝐵) / (𝐶𝐵)))
731recnd 11202 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
7473, 25, 24, 37, 12affineequivne 26737 . . . . . . . . 9 (𝜑 → (𝐴 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)) ↔ ((𝐴𝐵) / (𝐶𝐵)) = ((𝐴𝐵) / (𝐶𝐵))))
7572, 74mpbird 257 . . . . . . . 8 (𝜑𝐴 = (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)))
7675eqcomd 2735 . . . . . . 7 (𝜑 → (((1 − ((𝐴𝐵) / (𝐶𝐵))) · 𝐵) + (((𝐴𝐵) / (𝐶𝐵)) · 𝐶)) = 𝐴)
7771, 76sylan9eqr 2786 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) = 𝐴)
7877eqcomd 2735 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → 𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)))
7978biantrurd 532 . . . 4 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)) ↔ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)))))
8043adantr 480 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)))
81 oveq1 7394 . . . . . . . 8 (𝑡 = ((𝐴𝐵) / (𝐶𝐵)) → (𝑡 · (𝐺𝐹)) = (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)))
8281adantl 481 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑡 · (𝐺𝐹)) = (((𝐴𝐵) / (𝐶𝐵)) · (𝐺𝐹)))
8345a1i 11 . . . . . . 7 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑆 · (𝐴𝐵)) = (((𝐺𝐹) / (𝐶𝐵)) · (𝐴𝐵)))
8480, 82, 833eqtr4d 2774 . . . . . 6 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝑡 · (𝐺𝐹)) = (𝑆 · (𝐴𝐵)))
8584oveq1d 7402 . . . . 5 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → ((𝑡 · (𝐺𝐹)) + 𝐹) = ((𝑆 · (𝐴𝐵)) + 𝐹))
8685eqeq2d 2740 . . . 4 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → (𝐸 = ((𝑡 · (𝐺𝐹)) + 𝐹) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
8768, 79, 863bitr3d 309 . . 3 ((𝜑𝑡 = ((𝐴𝐵) / (𝐶𝐵))) → ((𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
8828, 87rspcedv 3581 . 2 (𝜑 → (𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹) → ∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺)))))
8957, 88impbid 212 1 (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴𝐵)) + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836
This theorem is referenced by:  affinecomb2  48692  rrx2linesl  48732
  Copyright terms: Public domain W3C validator