MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn 28161
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊

Proof of Theorem wwlksnredwwlkn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)))
2 eqid 2738 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
42, 3wwlknp 28109 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 simprl 767 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
6 peano2nn0 12203 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7 peano2nn0 12203 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
9 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
10 nn0p1nn 12202 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
116, 10syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
12 nn0re 12172 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
13 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
14 peano2re 11078 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
15 peano2re 11078 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1713, 14, 163jca 1126 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1812, 17syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1912ltp1d 11835 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
20 nn0re 12172 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
216, 20syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
2221ltp1d 11835 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) < ((𝑁 + 1) + 1))
23 lttr 10982 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) → ((𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1)) → 𝑁 < ((𝑁 + 1) + 1)))
2423imp 406 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) ∧ (𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1))) → 𝑁 < ((𝑁 + 1) + 1))
2518, 19, 22, 24syl12anc 833 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 < ((𝑁 + 1) + 1))
26 elfzo0 13356 . . . . . . . . . . . . 13 (𝑁 ∈ (0..^((𝑁 + 1) + 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 < ((𝑁 + 1) + 1)))
279, 11, 25, 26syl3anbrc 1341 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1)))
28 fz0add1fz1 13385 . . . . . . . . . . . 12 ((((𝑁 + 1) + 1) ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
298, 27, 28syl2anc 583 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
31 oveq2 7263 . . . . . . . . . . . . 13 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
3231eleq2d 2824 . . . . . . . . . . . 12 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3332adantl 481 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3433adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3530, 34mpbird 256 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
365, 35jca 511 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
37363adantr3 1169 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
38 pfxfvlsw 14336 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
3937, 38syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
40 lsw 14195 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
41403ad2ant1 1131 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4241adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4339, 42preq12d 4674 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))})
44 oveq1 7262 . . . . . . . . . . 11 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
45443ad2ant2 1132 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4645adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4746fveq2d 6760 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
4847preq2d 4673 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))})
49 nn0cn 12173 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
50 1cnd 10901 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
5149, 50pncand 11263 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
5251fveq2d 6760 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
536nn0cnd 12225 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5453, 50pncand 11263 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5554fveq2d 6760 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5652, 55preq12d 4674 . . . . . . . 8 (𝑁 ∈ ℕ0 → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5756adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5848, 57eqtrd 2778 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
59 fveq2 6756 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
60 fvoveq1 7278 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
6159, 60preq12d 4674 . . . . . . . . . . 11 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
6261eleq1d 2823 . . . . . . . . . 10 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6362rspcv 3547 . . . . . . . . 9 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
64 fzonn0p1 13392 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
6563, 64syl11 33 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
66653ad2ant3 1133 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6766impcom 407 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
6858, 67eqeltrd 2839 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} ∈ 𝐸)
6943, 68eqeltrd 2839 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
704, 69sylan2 592 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
71 wwlksnred 28158 . . . . 5 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
7271imp 406 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
73 eqeq2 2750 . . . . . 6 (𝑦 = (𝑊 prefix (𝑁 + 1)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1))))
74 fveq2 6756 . . . . . . . 8 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑊 prefix (𝑁 + 1))))
7574preq1d 4672 . . . . . . 7 (𝑦 = (𝑊 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑊)} = {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)})
7675eleq1d 2823 . . . . . 6 (𝑦 = (𝑊 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸 ↔ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
7773, 76anbi12d 630 . . . . 5 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) ↔ ((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
7877adantl 481 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 = (𝑊 prefix (𝑁 + 1))) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) ↔ ((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
7972, 78rspcedv 3544 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
801, 70, 79mp2and 695 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
8180ex 412 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {cpr 4560   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  cn 11903  0cn0 12163  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193   prefix cpfx 14311  Vtxcvtx 27269  Edgcedg 27320   WWalksN cwwlksn 28092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-substr 14282  df-pfx 14312  df-wwlks 28096  df-wwlksn 28097
This theorem is referenced by:  wwlksnredwwlkn0  28162
  Copyright terms: Public domain W3C validator