MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn 29928
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊

Proof of Theorem wwlksnredwwlkn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)))
2 eqid 2740 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
42, 3wwlknp 29876 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 simprl 770 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
6 peano2nn0 12593 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7 peano2nn0 12593 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
9 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
10 nn0p1nn 12592 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
116, 10syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
12 nn0re 12562 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
13 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
14 peano2re 11463 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
15 peano2re 11463 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1713, 14, 163jca 1128 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1812, 17syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1912ltp1d 12225 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
20 nn0re 12562 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
216, 20syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
2221ltp1d 12225 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) < ((𝑁 + 1) + 1))
23 lttr 11366 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) → ((𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1)) → 𝑁 < ((𝑁 + 1) + 1)))
2423imp 406 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) ∧ (𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1))) → 𝑁 < ((𝑁 + 1) + 1))
2518, 19, 22, 24syl12anc 836 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 < ((𝑁 + 1) + 1))
26 elfzo0 13757 . . . . . . . . . . . . 13 (𝑁 ∈ (0..^((𝑁 + 1) + 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 < ((𝑁 + 1) + 1)))
279, 11, 25, 26syl3anbrc 1343 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1)))
28 fz0add1fz1 13786 . . . . . . . . . . . 12 ((((𝑁 + 1) + 1) ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
298, 27, 28syl2anc 583 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
31 oveq2 7456 . . . . . . . . . . . . 13 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
3231eleq2d 2830 . . . . . . . . . . . 12 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3332adantl 481 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3433adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3530, 34mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
365, 35jca 511 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
37363adantr3 1171 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
38 pfxfvlsw 14743 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
3937, 38syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
40 lsw 14612 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
41403ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4241adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4339, 42preq12d 4766 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))})
44 oveq1 7455 . . . . . . . . . . 11 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
45443ad2ant2 1134 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4645adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4746fveq2d 6924 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
4847preq2d 4765 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))})
49 nn0cn 12563 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
50 1cnd 11285 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
5149, 50pncand 11648 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
5251fveq2d 6924 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
536nn0cnd 12615 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5453, 50pncand 11648 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5554fveq2d 6924 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5652, 55preq12d 4766 . . . . . . . 8 (𝑁 ∈ ℕ0 → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5756adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5848, 57eqtrd 2780 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
59 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
60 fvoveq1 7471 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
6159, 60preq12d 4766 . . . . . . . . . . 11 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
6261eleq1d 2829 . . . . . . . . . 10 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6362rspcv 3631 . . . . . . . . 9 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
64 fzonn0p1 13793 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
6563, 64syl11 33 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
66653ad2ant3 1135 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6766impcom 407 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
6858, 67eqeltrd 2844 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} ∈ 𝐸)
6943, 68eqeltrd 2844 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
704, 69sylan2 592 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
71 wwlksnred 29925 . . . . 5 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
7271imp 406 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
73 eqeq2 2752 . . . . . 6 (𝑦 = (𝑊 prefix (𝑁 + 1)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1))))
74 fveq2 6920 . . . . . . . 8 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑊 prefix (𝑁 + 1))))
7574preq1d 4764 . . . . . . 7 (𝑦 = (𝑊 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑊)} = {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)})
7675eleq1d 2829 . . . . . 6 (𝑦 = (𝑊 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸 ↔ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
7773, 76anbi12d 631 . . . . 5 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) ↔ ((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
7877adantl 481 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 = (𝑊 prefix (𝑁 + 1))) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) ↔ ((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
7972, 78rspcedv 3628 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
801, 70, 79mp2and 698 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
8180ex 412 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610   prefix cpfx 14718  Vtxcvtx 29031  Edgcedg 29082   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-substr 14689  df-pfx 14719  df-wwlks 29863  df-wwlksn 29864
This theorem is referenced by:  wwlksnredwwlkn0  29929
  Copyright terms: Public domain W3C validator