Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn 27695
 Description: For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊

Proof of Theorem wwlksnredwwlkn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)))
2 eqid 2798 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
42, 3wwlknp 27643 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 simprl 770 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
6 peano2nn0 11932 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7 peano2nn0 11932 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
9 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
10 nn0p1nn 11931 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
116, 10syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
12 nn0re 11901 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
13 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
14 peano2re 10809 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
15 peano2re 10809 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1713, 14, 163jca 1125 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1812, 17syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1912ltp1d 11566 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
20 nn0re 11901 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
216, 20syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
2221ltp1d 11566 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) < ((𝑁 + 1) + 1))
23 lttr 10713 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) → ((𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1)) → 𝑁 < ((𝑁 + 1) + 1)))
2423imp 410 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) ∧ (𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1))) → 𝑁 < ((𝑁 + 1) + 1))
2518, 19, 22, 24syl12anc 835 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 < ((𝑁 + 1) + 1))
26 elfzo0 13080 . . . . . . . . . . . . 13 (𝑁 ∈ (0..^((𝑁 + 1) + 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 < ((𝑁 + 1) + 1)))
279, 11, 25, 26syl3anbrc 1340 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1)))
28 fz0add1fz1 13109 . . . . . . . . . . . 12 ((((𝑁 + 1) + 1) ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
298, 27, 28syl2anc 587 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
3029adantr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
31 oveq2 7148 . . . . . . . . . . . . 13 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (1...(♯‘𝑊)) = (1...((𝑁 + 1) + 1)))
3231eleq2d 2875 . . . . . . . . . . . 12 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3332adantl 485 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3433adantl 485 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑁 + 1) ∈ (1...(♯‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3530, 34mpbird 260 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...(♯‘𝑊)))
365, 35jca 515 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
37363adantr3 1168 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))))
38 pfxfvlsw 14055 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
3937, 38syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (lastS‘(𝑊 prefix (𝑁 + 1))) = (𝑊‘((𝑁 + 1) − 1)))
40 lsw 13914 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
41403ad2ant1 1130 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4241adantl 485 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
4339, 42preq12d 4637 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))})
44 oveq1 7147 . . . . . . . . . . 11 ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
45443ad2ant2 1131 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4645adantl 485 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → ((♯‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4746fveq2d 6654 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
4847preq2d 4636 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))})
49 nn0cn 11902 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
50 1cnd 10632 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
5149, 50pncand 10994 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
5251fveq2d 6654 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
536nn0cnd 11952 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5453, 50pncand 10994 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5554fveq2d 6654 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5652, 55preq12d 4637 . . . . . . . 8 (𝑁 ∈ ℕ0 → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5756adantr 484 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5848, 57eqtrd 2833 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
59 fveq2 6650 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
60 fvoveq1 7163 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
6159, 60preq12d 4637 . . . . . . . . . . 11 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
6261eleq1d 2874 . . . . . . . . . 10 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6362rspcv 3566 . . . . . . . . 9 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
64 fzonn0p1 13116 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
6563, 64syl11 33 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
66653ad2ant3 1132 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6766impcom 411 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
6858, 67eqeltrd 2890 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((♯‘𝑊) − 1))} ∈ 𝐸)
6943, 68eqeltrd 2890 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
704, 69sylan2 595 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)
71 wwlksnred 27692 . . . . 5 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
7271imp 410 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
73 eqeq2 2810 . . . . . 6 (𝑦 = (𝑊 prefix (𝑁 + 1)) → ((𝑊 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1))))
74 fveq2 6650 . . . . . . . 8 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑊 prefix (𝑁 + 1))))
7574preq1d 4635 . . . . . . 7 (𝑦 = (𝑊 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑊)} = {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)})
7675eleq1d 2874 . . . . . 6 (𝑦 = (𝑊 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸 ↔ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸))
7773, 76anbi12d 633 . . . . 5 (𝑦 = (𝑊 prefix (𝑁 + 1)) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) ↔ ((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
7877adantl 485 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 = (𝑊 prefix (𝑁 + 1))) → (((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸) ↔ ((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸)))
7972, 78rspcedv 3564 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 prefix (𝑁 + 1)) = (𝑊 prefix (𝑁 + 1)) ∧ {(lastS‘(𝑊 prefix (𝑁 + 1))), (lastS‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
801, 70, 79mp2and 698 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸))
8180ex 416 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑊)} ∈ 𝐸)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {cpr 4527   class class class wbr 5031  ‘cfv 6327  (class class class)co 7140  ℝcr 10532  0cc0 10533  1c1 10534   + caddc 10536   < clt 10671   − cmin 10866  ℕcn 11632  ℕ0cn0 11892  ...cfz 12892  ..^cfzo 13035  ♯chash 13693  Word cword 13864  lastSclsw 13912   prefix cpfx 14030  Vtxcvtx 26803  Edgcedg 26854   WWalksN cwwlksn 27626 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-hash 13694  df-word 13865  df-lsw 13913  df-substr 14001  df-pfx 14031  df-wwlks 27630  df-wwlksn 27631 This theorem is referenced by:  wwlksnredwwlkn0  27696
 Copyright terms: Public domain W3C validator