| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2mpfo | Structured version Visualization version GIF version | ||
| Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 6-Dec-2019.) |
| Ref | Expression |
|---|---|
| pm2mpfo.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| pm2mpfo.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| pm2mpfo.b | ⊢ 𝐵 = (Base‘𝐶) |
| pm2mpfo.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
| pm2mpfo.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
| pm2mpfo.x | ⊢ 𝑋 = (var1‘𝐴) |
| pm2mpfo.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| pm2mpfo.q | ⊢ 𝑄 = (Poly1‘𝐴) |
| pm2mpfo.l | ⊢ 𝐿 = (Base‘𝑄) |
| pm2mpfo.t | ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) |
| Ref | Expression |
|---|---|
| pm2mpfo | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–onto→𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2mpfo.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | pm2mpfo.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 3 | pm2mpfo.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | pm2mpfo.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
| 5 | pm2mpfo.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
| 6 | pm2mpfo.x | . . 3 ⊢ 𝑋 = (var1‘𝐴) | |
| 7 | pm2mpfo.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 8 | pm2mpfo.q | . . 3 ⊢ 𝑄 = (Poly1‘𝐴) | |
| 9 | pm2mpfo.t | . . 3 ⊢ 𝑇 = (𝑁 pMatToMatPoly 𝑅) | |
| 10 | pm2mpfo.l | . . 3 ⊢ 𝐿 = (Base‘𝑄) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pm2mpf 22711 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐿) |
| 12 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃)) | |
| 14 | eqid 2731 | . . . . . 6 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 15 | eqid 2731 | . . . . . 6 ⊢ (𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) = (𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) | |
| 16 | 7, 8, 10, 12, 13, 14, 15, 1, 9 | mp2pm2mp 22724 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐿) → (𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) = 𝑝) |
| 17 | 16 | 3expa 1118 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) → (𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) = 𝑝) |
| 18 | 7, 8, 10, 1, 12, 13, 14, 15, 2, 3 | mply1topmatcl 22718 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑝 ∈ 𝐿) → ((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝) ∈ 𝐵) |
| 19 | 18 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) → ((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝) ∈ 𝐵) |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) ∧ 𝑓 = ((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) → 𝑓 = ((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) | |
| 21 | 20 | fveq2d 6826 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) ∧ 𝑓 = ((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) → (𝑇‘𝑓) = (𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝))) |
| 22 | 21 | eqeq2d 2742 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) ∧ 𝑓 = ((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) → (𝑝 = (𝑇‘𝑓) ↔ 𝑝 = (𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)))) |
| 23 | 19, 22 | rspcedv 3570 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) → (𝑝 = (𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) → ∃𝑓 ∈ 𝐵 𝑝 = (𝑇‘𝑓))) |
| 24 | 23 | com12 32 | . . . . 5 ⊢ (𝑝 = (𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) → ∃𝑓 ∈ 𝐵 𝑝 = (𝑇‘𝑓))) |
| 25 | 24 | eqcoms 2739 | . . . 4 ⊢ ((𝑇‘((𝑙 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑙)‘𝑘)𝑗)( ·𝑠 ‘𝑃)(𝑘(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))))‘𝑝)) = 𝑝 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) → ∃𝑓 ∈ 𝐵 𝑝 = (𝑇‘𝑓))) |
| 26 | 17, 25 | mpcom 38 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑝 ∈ 𝐿) → ∃𝑓 ∈ 𝐵 𝑝 = (𝑇‘𝑓)) |
| 27 | 26 | ralrimiva 3124 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑝 ∈ 𝐿 ∃𝑓 ∈ 𝐵 𝑝 = (𝑇‘𝑓)) |
| 28 | dffo3 7035 | . 2 ⊢ (𝑇:𝐵–onto→𝐿 ↔ (𝑇:𝐵⟶𝐿 ∧ ∀𝑝 ∈ 𝐿 ∃𝑓 ∈ 𝐵 𝑝 = (𝑇‘𝑓))) | |
| 29 | 11, 27, 28 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵–onto→𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ↦ cmpt 5172 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Fincfn 8869 ℕ0cn0 12378 Basecbs 17117 ·𝑠 cvsca 17162 Σg cgsu 17341 .gcmg 18977 mulGrpcmgp 20056 Ringcrg 20149 var1cv1 22086 Poly1cpl1 22087 coe1cco1 22088 Mat cmat 22320 pMatToMatPoly cpm2mp 22705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-subrng 20459 df-subrg 20483 df-lmod 20793 df-lss 20863 df-sra 21105 df-rgmod 21106 df-dsmm 21667 df-frlm 21682 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-psr1 22090 df-vr1 22091 df-ply1 22092 df-coe1 22093 df-mamu 22304 df-mat 22321 df-decpmat 22676 df-pm2mp 22706 |
| This theorem is referenced by: pm2mpf1o 22728 |
| Copyright terms: Public domain | W3C validator |