Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoel0 Structured version   Visualization version   GIF version

Theorem lcoel0 47157
Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoel0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (0gβ€˜π‘€) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lcoel0
Dummy variables 𝑠 𝑣 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6905 . . . 4 (0gβ€˜π‘€) ∈ V
21snid 4665 . . 3 (0gβ€˜π‘€) ∈ {(0gβ€˜π‘€)}
3 oveq2 7417 . . . 4 (𝑉 = βˆ… β†’ (𝑀 LinCo 𝑉) = (𝑀 LinCo βˆ…))
4 lmodgrp 20478 . . . . . 6 (𝑀 ∈ LMod β†’ 𝑀 ∈ Grp)
5 grpmnd 18826 . . . . . 6 (𝑀 ∈ Grp β†’ 𝑀 ∈ Mnd)
6 lco0 47156 . . . . . 6 (𝑀 ∈ Mnd β†’ (𝑀 LinCo βˆ…) = {(0gβ€˜π‘€)})
74, 5, 63syl 18 . . . . 5 (𝑀 ∈ LMod β†’ (𝑀 LinCo βˆ…) = {(0gβ€˜π‘€)})
87adantr 482 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑀 LinCo βˆ…) = {(0gβ€˜π‘€)})
93, 8sylan9eq 2793 . . 3 ((𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (𝑀 LinCo 𝑉) = {(0gβ€˜π‘€)})
102, 9eleqtrrid 2841 . 2 ((𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (0gβ€˜π‘€) ∈ (𝑀 LinCo 𝑉))
11 eqid 2733 . . . . . 6 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
12 eqid 2733 . . . . . 6 (0gβ€˜π‘€) = (0gβ€˜π‘€)
1311, 12lmod0vcl 20501 . . . . 5 (𝑀 ∈ LMod β†’ (0gβ€˜π‘€) ∈ (Baseβ€˜π‘€))
1413adantr 482 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (0gβ€˜π‘€) ∈ (Baseβ€˜π‘€))
1514adantl 483 . . 3 ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (0gβ€˜π‘€) ∈ (Baseβ€˜π‘€))
16 eqid 2733 . . . . . 6 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
17 eqid 2733 . . . . . 6 (0gβ€˜(Scalarβ€˜π‘€)) = (0gβ€˜(Scalarβ€˜π‘€))
18 eqidd 2734 . . . . . . 7 (𝑣 = 𝑀 β†’ (0gβ€˜(Scalarβ€˜π‘€)) = (0gβ€˜(Scalarβ€˜π‘€)))
1918cbvmptv 5262 . . . . . 6 (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) = (𝑀 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))
20 eqid 2733 . . . . . 6 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
2111, 16, 17, 12, 19, 20lcoc0 47151 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)))
2221adantl 483 . . . 4 ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)))
23 simpl 484 . . . . . . . 8 (((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))) β†’ (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
24 breq1 5152 . . . . . . . . . 10 (𝑠 = (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ↔ (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€))))
25 oveq1 7416 . . . . . . . . . . . 12 (𝑠 = (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑠( linC β€˜π‘€)𝑉) = ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉))
2625eqeq2d 2744 . . . . . . . . . . 11 (𝑠 = (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) β†’ ((0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉) ↔ (0gβ€˜π‘€) = ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉)))
27 eqcom 2740 . . . . . . . . . . 11 ((0gβ€˜π‘€) = ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) ↔ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€))
2826, 27bitrdi 287 . . . . . . . . . 10 (𝑠 = (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) β†’ ((0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉) ↔ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)))
2924, 28anbi12d 632 . . . . . . . . 9 (𝑠 = (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) β†’ ((𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)) ↔ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€))))
3029adantl 483 . . . . . . . 8 ((((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))) ∧ 𝑠 = (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))) β†’ ((𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)) ↔ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€))))
3123, 30rspcedv 3606 . . . . . . 7 (((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))) β†’ (((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉))))
3231ex 414 . . . . . 6 ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) β†’ ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)))))
3332com23 86 . . . . 5 ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) β†’ (((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)) β†’ ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)))))
34333impib 1117 . . . 4 (((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ (𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ ((𝑣 ∈ 𝑉 ↦ (0gβ€˜(Scalarβ€˜π‘€)))( linC β€˜π‘€)𝑉) = (0gβ€˜π‘€)) β†’ ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉))))
3522, 34mpcom 38 . . 3 ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)))
3611, 16, 20lcoval 47141 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((0gβ€˜π‘€) ∈ (𝑀 LinCo 𝑉) ↔ ((0gβ€˜π‘€) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)))))
3736adantl 483 . . 3 ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ ((0gβ€˜π‘€) ∈ (𝑀 LinCo 𝑉) ↔ ((0gβ€˜π‘€) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘  ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (0gβ€˜π‘€) = (𝑠( linC β€˜π‘€)𝑉)))))
3815, 35, 37mpbir2and 712 . 2 ((Β¬ 𝑉 = βˆ… ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))) β†’ (0gβ€˜π‘€) ∈ (𝑀 LinCo 𝑉))
3910, 38pm2.61ian 811 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (0gβ€˜π‘€) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  βˆ…c0 4323  π’« cpw 4603  {csn 4629   class class class wbr 5149   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820   finSupp cfsupp 9361  Basecbs 17144  Scalarcsca 17200  0gc0g 17385  Mndcmnd 18625  Grpcgrp 18819  LModclmod 20471   linC clinc 47133   LinCo clinco 47134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-map 8822  df-en 8940  df-fin 8943  df-fsupp 9362  df-seq 13967  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-ring 20058  df-lmod 20473  df-linc 47135  df-lco 47136
This theorem is referenced by:  lincolss  47163
  Copyright terms: Public domain W3C validator