Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoel0 Structured version   Visualization version   GIF version

Theorem lcoel0 45769
Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoel0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lcoel0
Dummy variables 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . . 4 (0g𝑀) ∈ V
21snid 4597 . . 3 (0g𝑀) ∈ {(0g𝑀)}
3 oveq2 7283 . . . 4 (𝑉 = ∅ → (𝑀 LinCo 𝑉) = (𝑀 LinCo ∅))
4 lmodgrp 20130 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
5 grpmnd 18584 . . . . . 6 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
6 lco0 45768 . . . . . 6 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
74, 5, 63syl 18 . . . . 5 (𝑀 ∈ LMod → (𝑀 LinCo ∅) = {(0g𝑀)})
87adantr 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {(0g𝑀)})
93, 8sylan9eq 2798 . . 3 ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 LinCo 𝑉) = {(0g𝑀)})
102, 9eleqtrrid 2846 . 2 ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
11 eqid 2738 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
12 eqid 2738 . . . . . 6 (0g𝑀) = (0g𝑀)
1311, 12lmod0vcl 20152 . . . . 5 (𝑀 ∈ LMod → (0g𝑀) ∈ (Base‘𝑀))
1413adantr 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (Base‘𝑀))
1514adantl 482 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (Base‘𝑀))
16 eqid 2738 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2738 . . . . . 6 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
18 eqidd 2739 . . . . . . 7 (𝑣 = 𝑤 → (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)))
1918cbvmptv 5187 . . . . . 6 (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) = (𝑤𝑉 ↦ (0g‘(Scalar‘𝑀)))
20 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
2111, 16, 17, 12, 19, 20lcoc0 45763 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
2221adantl 482 . . . 4 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
23 simpl 483 . . . . . . . 8 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
24 breq1 5077 . . . . . . . . . 10 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀))))
25 oveq1 7282 . . . . . . . . . . . 12 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → (𝑠( linC ‘𝑀)𝑉) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉))
2625eqeq2d 2749 . . . . . . . . . . 11 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((0g𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ (0g𝑀) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉)))
27 eqcom 2745 . . . . . . . . . . 11 ((0g𝑀) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))
2826, 27bitrdi 287 . . . . . . . . . 10 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((0g𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
2924, 28anbi12d 631 . . . . . . . . 9 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))))
3029adantl 482 . . . . . . . 8 ((((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) ∧ 𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))))
3123, 30rspcedv 3554 . . . . . . 7 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉))))
3231ex 413 . . . . . 6 ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3332com23 86 . . . . 5 ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
34333impib 1115 . . . 4 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉))))
3522, 34mpcom 38 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))
3611, 16, 20lcoval 45753 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((0g𝑀) ∈ (𝑀 LinCo 𝑉) ↔ ((0g𝑀) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3736adantl 482 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((0g𝑀) ∈ (𝑀 LinCo 𝑉) ↔ ((0g𝑀) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3815, 35, 37mpbir2and 710 . 2 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
3910, 38pm2.61ian 809 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  Mndcmnd 18385  Grpcgrp 18577  LModclmod 20123   linC clinc 45745   LinCo clinco 45746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-map 8617  df-en 8734  df-fin 8737  df-fsupp 9129  df-seq 13722  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ring 19785  df-lmod 20125  df-linc 45747  df-lco 45748
This theorem is referenced by:  lincolss  45775
  Copyright terms: Public domain W3C validator