Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoel0 Structured version   Visualization version   GIF version

Theorem lcoel0 44503
Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoel0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lcoel0
Dummy variables 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6683 . . . 4 (0g𝑀) ∈ V
21snid 4601 . . 3 (0g𝑀) ∈ {(0g𝑀)}
3 oveq2 7164 . . . 4 (𝑉 = ∅ → (𝑀 LinCo 𝑉) = (𝑀 LinCo ∅))
4 lmodgrp 19641 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
5 grpmnd 18110 . . . . . 6 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
6 lco0 44502 . . . . . 6 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
74, 5, 63syl 18 . . . . 5 (𝑀 ∈ LMod → (𝑀 LinCo ∅) = {(0g𝑀)})
87adantr 483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {(0g𝑀)})
93, 8sylan9eq 2876 . . 3 ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 LinCo 𝑉) = {(0g𝑀)})
102, 9eleqtrrid 2920 . 2 ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
11 eqid 2821 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
12 eqid 2821 . . . . . 6 (0g𝑀) = (0g𝑀)
1311, 12lmod0vcl 19663 . . . . 5 (𝑀 ∈ LMod → (0g𝑀) ∈ (Base‘𝑀))
1413adantr 483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (Base‘𝑀))
1514adantl 484 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (Base‘𝑀))
16 eqid 2821 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2821 . . . . . 6 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
18 eqidd 2822 . . . . . . 7 (𝑣 = 𝑤 → (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)))
1918cbvmptv 5169 . . . . . 6 (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) = (𝑤𝑉 ↦ (0g‘(Scalar‘𝑀)))
20 eqid 2821 . . . . . 6 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
2111, 16, 17, 12, 19, 20lcoc0 44497 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
2221adantl 484 . . . 4 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
23 simpl 485 . . . . . . . 8 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
24 breq1 5069 . . . . . . . . . 10 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀))))
25 oveq1 7163 . . . . . . . . . . . 12 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → (𝑠( linC ‘𝑀)𝑉) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉))
2625eqeq2d 2832 . . . . . . . . . . 11 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((0g𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ (0g𝑀) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉)))
27 eqcom 2828 . . . . . . . . . . 11 ((0g𝑀) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))
2826, 27syl6bb 289 . . . . . . . . . 10 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((0g𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
2924, 28anbi12d 632 . . . . . . . . 9 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))))
3029adantl 484 . . . . . . . 8 ((((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) ∧ 𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))))
3123, 30rspcedv 3616 . . . . . . 7 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉))))
3231ex 415 . . . . . 6 ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3332com23 86 . . . . 5 ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
34333impib 1112 . . . 4 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉))))
3522, 34mpcom 38 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))
3611, 16, 20lcoval 44487 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((0g𝑀) ∈ (𝑀 LinCo 𝑉) ↔ ((0g𝑀) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3736adantl 484 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((0g𝑀) ∈ (𝑀 LinCo 𝑉) ↔ ((0g𝑀) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3815, 35, 37mpbir2and 711 . 2 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
3910, 38pm2.61ian 810 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  c0 4291  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  m cmap 8406   finSupp cfsupp 8833  Basecbs 16483  Scalarcsca 16568  0gc0g 16713  Mndcmnd 17911  Grpcgrp 18103  LModclmod 19634   linC clinc 44479   LinCo clinco 44480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-map 8408  df-en 8510  df-fin 8513  df-fsupp 8834  df-seq 13371  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-ring 19299  df-lmod 19636  df-linc 44481  df-lco 44482
This theorem is referenced by:  lincolss  44509
  Copyright terms: Public domain W3C validator