Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . 4
⊢
(0g‘𝑀) ∈ V |
2 | 1 | snid 4594 |
. . 3
⊢
(0g‘𝑀) ∈ {(0g‘𝑀)} |
3 | | oveq2 7263 |
. . . 4
⊢ (𝑉 = ∅ → (𝑀 LinCo 𝑉) = (𝑀 LinCo ∅)) |
4 | | lmodgrp 20045 |
. . . . . 6
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
5 | | grpmnd 18499 |
. . . . . 6
⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) |
6 | | lco0 45656 |
. . . . . 6
⊢ (𝑀 ∈ Mnd → (𝑀 LinCo ∅) =
{(0g‘𝑀)}) |
7 | 4, 5, 6 | 3syl 18 |
. . . . 5
⊢ (𝑀 ∈ LMod → (𝑀 LinCo ∅) =
{(0g‘𝑀)}) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
(𝑀 LinCo ∅) =
{(0g‘𝑀)}) |
9 | 3, 8 | sylan9eq 2799 |
. . 3
⊢ ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
(𝑀 LinCo 𝑉) = {(0g‘𝑀)}) |
10 | 2, 9 | eleqtrrid 2846 |
. 2
⊢ ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
(0g‘𝑀)
∈ (𝑀 LinCo 𝑉)) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
12 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) |
13 | 11, 12 | lmod0vcl 20067 |
. . . . 5
⊢ (𝑀 ∈ LMod →
(0g‘𝑀)
∈ (Base‘𝑀)) |
14 | 13 | adantr 480 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
(0g‘𝑀)
∈ (Base‘𝑀)) |
15 | 14 | adantl 481 |
. . 3
⊢ ((¬
𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
(0g‘𝑀)
∈ (Base‘𝑀)) |
16 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
17 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) |
18 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑣 = 𝑤 →
(0g‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀))) |
19 | 18 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) = (𝑤 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) |
20 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
21 | 11, 16, 17, 12, 19, 20 | lcoc0 45651 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀))) |
22 | 21 | adantl 481 |
. . . 4
⊢ ((¬
𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀))) |
23 | | simpl 482 |
. . . . . . . 8
⊢ (((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
24 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) → (𝑠 finSupp
(0g‘(Scalar‘𝑀)) ↔ (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)))) |
25 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) → (𝑠( linC ‘𝑀)𝑉) = ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉)) |
26 | 25 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) → ((0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ (0g‘𝑀) = ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉))) |
27 | | eqcom 2745 |
. . . . . . . . . . 11
⊢
((0g‘𝑀) = ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) ↔ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)) |
28 | 26, 27 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) → ((0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀))) |
29 | 24, 28 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑠 = (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) → ((𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)))) |
30 | 29 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) ∧ 𝑠 = (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))) → ((𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)))) |
31 | 23, 30 | rspcedv 3544 |
. . . . . . 7
⊢ (((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉)))) |
32 | 31 | ex 412 |
. . . . . 6
⊢ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
(((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉))))) |
33 | 32 | com23 86 |
. . . . 5
⊢ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → (((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉))))) |
34 | 33 | 3impib 1114 |
. . . 4
⊢ (((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑣 ∈ 𝑉 ↦
(0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g‘𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉)))) |
35 | 22, 34 | mpcom 38 |
. . 3
⊢ ((¬
𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
∃𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉))) |
36 | 11, 16, 20 | lcoval 45641 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
((0g‘𝑀)
∈ (𝑀 LinCo 𝑉) ↔
((0g‘𝑀)
∈ (Base‘𝑀) ∧
∃𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉))))) |
37 | 36 | adantl 481 |
. . 3
⊢ ((¬
𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
((0g‘𝑀)
∈ (𝑀 LinCo 𝑉) ↔
((0g‘𝑀)
∈ (Base‘𝑀) ∧
∃𝑠 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp
(0g‘(Scalar‘𝑀)) ∧ (0g‘𝑀) = (𝑠( linC ‘𝑀)𝑉))))) |
38 | 15, 35, 37 | mpbir2and 709 |
. 2
⊢ ((¬
𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀))) →
(0g‘𝑀)
∈ (𝑀 LinCo 𝑉)) |
39 | 10, 38 | pm2.61ian 808 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) →
(0g‘𝑀)
∈ (𝑀 LinCo 𝑉)) |