Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoel0 Structured version   Visualization version   GIF version

Theorem lcoel0 44699
Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lcoel0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lcoel0
Dummy variables 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6671 . . . 4 (0g𝑀) ∈ V
21snid 4585 . . 3 (0g𝑀) ∈ {(0g𝑀)}
3 oveq2 7153 . . . 4 (𝑉 = ∅ → (𝑀 LinCo 𝑉) = (𝑀 LinCo ∅))
4 lmodgrp 19634 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
5 grpmnd 18106 . . . . . 6 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
6 lco0 44698 . . . . . 6 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
74, 5, 63syl 18 . . . . 5 (𝑀 ∈ LMod → (𝑀 LinCo ∅) = {(0g𝑀)})
87adantr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {(0g𝑀)})
93, 8sylan9eq 2879 . . 3 ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 LinCo 𝑉) = {(0g𝑀)})
102, 9eleqtrrid 2923 . 2 ((𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
11 eqid 2824 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
12 eqid 2824 . . . . . 6 (0g𝑀) = (0g𝑀)
1311, 12lmod0vcl 19656 . . . . 5 (𝑀 ∈ LMod → (0g𝑀) ∈ (Base‘𝑀))
1413adantr 484 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (Base‘𝑀))
1514adantl 485 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (Base‘𝑀))
16 eqid 2824 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2824 . . . . . 6 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
18 eqidd 2825 . . . . . . 7 (𝑣 = 𝑤 → (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)))
1918cbvmptv 5155 . . . . . 6 (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) = (𝑤𝑉 ↦ (0g‘(Scalar‘𝑀)))
20 eqid 2824 . . . . . 6 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
2111, 16, 17, 12, 19, 20lcoc0 44693 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
2221adantl 485 . . . 4 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
23 simpl 486 . . . . . . . 8 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
24 breq1 5055 . . . . . . . . . 10 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀))))
25 oveq1 7152 . . . . . . . . . . . 12 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → (𝑠( linC ‘𝑀)𝑉) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉))
2625eqeq2d 2835 . . . . . . . . . . 11 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((0g𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ (0g𝑀) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉)))
27 eqcom 2831 . . . . . . . . . . 11 ((0g𝑀) = ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))
2826, 27syl6bb 290 . . . . . . . . . 10 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((0g𝑀) = (𝑠( linC ‘𝑀)𝑉) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)))
2924, 28anbi12d 633 . . . . . . . . 9 (𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))))
3029adantl 485 . . . . . . . 8 ((((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) ∧ 𝑠 = (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀))))
3123, 30rspcedv 3602 . . . . . . 7 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉))))
3231ex 416 . . . . . 6 ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3332com23 86 . . . . 5 ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) → (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
34333impib 1113 . . . 4 (((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑣𝑉 ↦ (0g‘(Scalar‘𝑀))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑣𝑉 ↦ (0g‘(Scalar‘𝑀)))( linC ‘𝑀)𝑉) = (0g𝑀)) → ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉))))
3522, 34mpcom 38 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))
3611, 16, 20lcoval 44683 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((0g𝑀) ∈ (𝑀 LinCo 𝑉) ↔ ((0g𝑀) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3736adantl 485 . . 3 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((0g𝑀) ∈ (𝑀 LinCo 𝑉) ↔ ((0g𝑀) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (0g𝑀) = (𝑠( linC ‘𝑀)𝑉)))))
3815, 35, 37mpbir2and 712 . 2 ((¬ 𝑉 = ∅ ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
3910, 38pm2.61ian 811 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wrex 3134  c0 4275  𝒫 cpw 4521  {csn 4549   class class class wbr 5052  cmpt 5132  cfv 6343  (class class class)co 7145  m cmap 8396   finSupp cfsupp 8824  Basecbs 16479  Scalarcsca 16564  0gc0g 16709  Mndcmnd 17907  Grpcgrp 18099  LModclmod 19627   linC clinc 44675   LinCo clinco 44676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-map 8398  df-en 8500  df-fin 8503  df-fsupp 8825  df-seq 13370  df-0g 16711  df-gsum 16712  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-ring 19295  df-lmod 19629  df-linc 44677  df-lco 44678
This theorem is referenced by:  lincolss  44705
  Copyright terms: Public domain W3C validator