Step | Hyp | Ref
| Expression |
1 | | eliun 4928 |
. . 3
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥 ∈ 𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁)) |
2 | | isclwwlknon 28455 |
. . . . 5
⊢ (𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)) |
3 | 2 | rexbii 3181 |
. . . 4
⊢
(∃𝑥 ∈
𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)) |
4 | | simpl 483 |
. . . . . 6
⊢ ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) |
5 | 4 | rexlimivw 3211 |
. . . . 5
⊢
(∃𝑥 ∈
𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) |
6 | | clwwlknun.v |
. . . . . . . . 9
⊢ 𝑉 = (Vtx‘𝐺) |
7 | | eqid 2738 |
. . . . . . . . 9
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
8 | 6, 7 | clwwlknp 28401 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) |
9 | 8 | anim2i 617 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))) |
10 | 7, 6 | usgrpredgv 27564 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USGraph ∧
{(lastS‘𝑦), (𝑦‘0)} ∈
(Edg‘𝐺)) →
((lastS‘𝑦) ∈
𝑉 ∧ (𝑦‘0) ∈ 𝑉)) |
11 | 10 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USGraph →
({(lastS‘𝑦), (𝑦‘0)} ∈
(Edg‘𝐺) →
((lastS‘𝑦) ∈
𝑉 ∧ (𝑦‘0) ∈ 𝑉))) |
12 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((lastS‘𝑦)
∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉) |
13 | 11, 12 | syl6com 37 |
. . . . . . . . . . 11
⊢
({(lastS‘𝑦),
(𝑦‘0)} ∈
(Edg‘𝐺) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉)) |
14 | 13 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉)) |
15 | 14 | impcom 408 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉) |
16 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0)) |
17 | 16 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥) |
18 | 17 | biantrud 532 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
19 | 18 | bicomd 222 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
20 | 15, 19 | rspcedv 3554 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
21 | 20 | adantld 491 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
22 | 9, 21 | mpcom 38 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)) |
23 | 22 | ex 413 |
. . . . 5
⊢ (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
24 | 5, 23 | impbid2 225 |
. . . 4
⊢ (𝐺 ∈ USGraph →
(∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
25 | 3, 24 | syl5bb 283 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑥 ∈ 𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
26 | 1, 25 | bitr2id 284 |
. 2
⊢ (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 ∈ ∪
𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))) |
27 | 26 | eqrdv 2736 |
1
⊢ (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = ∪
𝑥 ∈ 𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)) |