MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknun Structured version   Visualization version   GIF version

Theorem clwwlknun 27893
Description: The set of closed walks of fixed length 𝑁 in a simple graph 𝐺 is the union of the closed walks of the fixed length 𝑁 on each of the vertices of graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypothesis
Ref Expression
clwwlknun.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknun (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉

Proof of Theorem clwwlknun
Dummy variables 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4925 . . 3 (𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁))
2 isclwwlknon 27872 . . . . 5 (𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
32rexbii 3249 . . . 4 (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
4 simpl 485 . . . . . 6 ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
54rexlimivw 3284 . . . . 5 (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
6 clwwlknun.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
7 eqid 2823 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
86, 7clwwlknp 27817 . . . . . . . 8 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))
98anim2i 618 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))))
107, 6usgrpredgv 26981 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉))
1110ex 415 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉)))
12 simpr 487 . . . . . . . . . . . 12 (((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉)
1311, 12syl6com 37 . . . . . . . . . . 11 ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
14133ad2ant3 1131 . . . . . . . . . 10 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
1514impcom 410 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉)
16 simpr 487 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0))
1716eqcomd 2829 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥)
1817biantrud 534 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
1918bicomd 225 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
2015, 19rspcedv 3618 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2120adantld 493 . . . . . . 7 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
229, 21mpcom 38 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
2322ex 415 . . . . 5 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
245, 23impbid2 228 . . . 4 (𝐺 ∈ USGraph → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
253, 24syl5bb 285 . . 3 (𝐺 ∈ USGraph → (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
261, 25syl5rbb 286 . 2 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)))
2726eqrdv 2821 1 (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {cpr 4571   ciun 4921  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  ..^cfzo 13036  chash 13693  Word cword 13864  lastSclsw 13916  Vtxcvtx 26783  Edgcedg 26834  USGraphcusgr 26936   ClWWalksN cclwwlkn 27804  ClWWalksNOncclwwlknon 27868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26835  df-umgr 26870  df-usgr 26938  df-clwwlk 27762  df-clwwlkn 27805  df-clwwlknon 27869
This theorem is referenced by:  numclwwlk4  28167
  Copyright terms: Public domain W3C validator