MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknun Structured version   Visualization version   GIF version

Theorem clwwlknun 30041
Description: The set of closed walks of fixed length 𝑁 in a simple graph 𝐺 is the union of the closed walks of the fixed length 𝑁 on each of the vertices of graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypothesis
Ref Expression
clwwlknun.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknun (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉

Proof of Theorem clwwlknun
Dummy variables 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4959 . . 3 (𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁))
2 isclwwlknon 30020 . . . . 5 (𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
32rexbii 3076 . . . 4 (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
4 simpl 482 . . . . . 6 ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
54rexlimivw 3130 . . . . 5 (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
6 clwwlknun.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
7 eqid 2729 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
86, 7clwwlknp 29966 . . . . . . . 8 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))
98anim2i 617 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))))
107, 6usgrpredgv 29124 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉))
1110ex 412 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉)))
12 simpr 484 . . . . . . . . . . . 12 (((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉)
1311, 12syl6com 37 . . . . . . . . . . 11 ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
14133ad2ant3 1135 . . . . . . . . . 10 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
1514impcom 407 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉)
16 simpr 484 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0))
1716eqcomd 2735 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥)
1817biantrud 531 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
1918bicomd 223 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
2015, 19rspcedv 3581 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2120adantld 490 . . . . . . 7 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
229, 21mpcom 38 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
2322ex 412 . . . . 5 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
245, 23impbid2 226 . . . 4 (𝐺 ∈ USGraph → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
253, 24bitrid 283 . . 3 (𝐺 ∈ USGraph → (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
261, 25bitr2id 284 . 2 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)))
2726eqrdv 2727 1 (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {cpr 4591   ciun 4955  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  ..^cfzo 13615  chash 14295  Word cword 14478  lastSclsw 14527  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   ClWWalksN cclwwlkn 29953  ClWWalksNOncclwwlknon 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-edg 28975  df-umgr 29010  df-usgr 29078  df-clwwlk 29911  df-clwwlkn 29954  df-clwwlknon 30017
This theorem is referenced by:  numclwwlk4  30315
  Copyright terms: Public domain W3C validator