MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknun Structured version   Visualization version   GIF version

Theorem clwwlknun 30103
Description: The set of closed walks of fixed length 𝑁 in a simple graph 𝐺 is the union of the closed walks of the fixed length 𝑁 on each of the vertices of graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypothesis
Ref Expression
clwwlknun.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknun (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉

Proof of Theorem clwwlknun
Dummy variables 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4947 . . 3 (𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁))
2 isclwwlknon 30082 . . . . 5 (𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
32rexbii 3081 . . . 4 (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
4 simpl 482 . . . . . 6 ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
54rexlimivw 3131 . . . . 5 (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
6 clwwlknun.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
7 eqid 2733 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
86, 7clwwlknp 30028 . . . . . . . 8 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))
98anim2i 617 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))))
107, 6usgrpredgv 29186 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉))
1110ex 412 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉)))
12 simpr 484 . . . . . . . . . . . 12 (((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉)
1311, 12syl6com 37 . . . . . . . . . . 11 ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
14133ad2ant3 1135 . . . . . . . . . 10 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
1514impcom 407 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉)
16 simpr 484 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0))
1716eqcomd 2739 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥)
1817biantrud 531 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
1918bicomd 223 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
2015, 19rspcedv 3567 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2120adantld 490 . . . . . . 7 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
229, 21mpcom 38 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
2322ex 412 . . . . 5 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
245, 23impbid2 226 . . . 4 (𝐺 ∈ USGraph → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
253, 24bitrid 283 . . 3 (𝐺 ∈ USGraph → (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
261, 25bitr2id 284 . 2 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)))
2726eqrdv 2731 1 (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  {cpr 4579   ciun 4943  cfv 6489  (class class class)co 7355  0cc0 11016  1c1 11017   + caddc 11019  cmin 11354  ..^cfzo 13564  chash 14247  Word cword 14430  lastSclsw 14479  Vtxcvtx 28985  Edgcedg 29036  USGraphcusgr 29138   ClWWalksN cclwwlkn 30015  ClWWalksNOncclwwlknon 30078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-edg 29037  df-umgr 29072  df-usgr 29140  df-clwwlk 29973  df-clwwlkn 30016  df-clwwlknon 30079
This theorem is referenced by:  numclwwlk4  30377
  Copyright terms: Public domain W3C validator