Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknun Structured version   Visualization version   GIF version

Theorem clwwlknun 27904
 Description: The set of closed walks of fixed length 𝑁 in a simple graph 𝐺 is the union of the closed walks of the fixed length 𝑁 on each of the vertices of graph 𝐺. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypothesis
Ref Expression
clwwlknun.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknun (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉

Proof of Theorem clwwlknun
Dummy variables 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4885 . . 3 (𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁))
2 isclwwlknon 27883 . . . . 5 (𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
32rexbii 3210 . . . 4 (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
4 simpl 486 . . . . . 6 ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
54rexlimivw 3241 . . . . 5 (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
6 clwwlknun.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
7 eqid 2798 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
86, 7clwwlknp 27829 . . . . . . . 8 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))
98anim2i 619 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))))
107, 6usgrpredgv 26994 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉))
1110ex 416 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉)))
12 simpr 488 . . . . . . . . . . . 12 (((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉)
1311, 12syl6com 37 . . . . . . . . . . 11 ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
14133ad2ant3 1132 . . . . . . . . . 10 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → (𝐺 ∈ USGraph → (𝑦‘0) ∈ 𝑉))
1514impcom 411 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉)
16 simpr 488 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0))
1716eqcomd 2804 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥)
1817biantrud 535 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
1918bicomd 226 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
2015, 19rspcedv 3564 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2120adantld 494 . . . . . . 7 ((𝐺 ∈ USGraph ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
229, 21mpcom 38 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
2322ex 416 . . . . 5 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
245, 23impbid2 229 . . . 4 (𝐺 ∈ USGraph → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
253, 24syl5bb 286 . . 3 (𝐺 ∈ USGraph → (∃𝑥𝑉 𝑦 ∈ (𝑥(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
261, 25syl5rbb 287 . 2 (𝐺 ∈ USGraph → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁)))
2726eqrdv 2796 1 (𝐺 ∈ USGraph → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 (𝑥(ClWWalksNOn‘𝐺)𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {cpr 4527  ∪ ciun 4881  ‘cfv 6324  (class class class)co 7135  0cc0 10528  1c1 10529   + caddc 10531   − cmin 10861  ..^cfzo 13030  ♯chash 13688  Word cword 13859  lastSclsw 13907  Vtxcvtx 26796  Edgcedg 26847  USGraphcusgr 26949   ClWWalksN cclwwlkn 27816  ClWWalksNOncclwwlknon 27879 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-dju 9316  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-n0 11888  df-xnn0 11958  df-z 11972  df-uz 12234  df-fz 12888  df-fzo 13031  df-hash 13689  df-word 13860  df-edg 26848  df-umgr 26883  df-usgr 26951  df-clwwlk 27774  df-clwwlkn 27817  df-clwwlknon 27880 This theorem is referenced by:  numclwwlk4  28178
 Copyright terms: Public domain W3C validator