| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusconngr | Structured version Visualization version GIF version | ||
| Description: A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| Ref | Expression |
|---|---|
| cusconngr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | iscplgredg 29397 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒)) |
| 4 | simp-4l 782 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UHGraph) | |
| 5 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → 𝑘 ∈ (Vtx‘𝐺)) | |
| 6 | eldifi 4090 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘}) → 𝑛 ∈ (Vtx‘𝐺)) | |
| 7 | 5, 6 | anim12i 613 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
| 10 | id 22 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (Edg‘𝐺) → 𝑒 ∈ (Edg‘𝐺)) | |
| 11 | sseq2 3970 | . . . . . . . . . . . 12 ⊢ (𝑐 = 𝑒 → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒)) | |
| 12 | 11 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ (Edg‘𝐺) ∧ 𝑐 = 𝑒) → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒)) |
| 13 | 10, 12 | rspcedv 3578 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (Edg‘𝐺) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)) |
| 14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)) |
| 15 | 14 | imp 406 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) |
| 16 | 1, 2 | 1pthon2v 30132 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)) ∧ ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 17 | 4, 9, 15, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 18 | 17 | rexlimdva2 3136 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 19 | 18 | ralimdva 3145 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 20 | 19 | ralimdva 3145 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 21 | 3, 20 | sylbid 240 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 22 | 21 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 23 | 1 | isconngr1 30169 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 25 | 22, 24 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 {cpr 4587 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Vtxcvtx 28976 Edgcedg 29027 UHGraphcuhgr 29036 ComplGraphccplgr 29389 PathsOncpthson 29692 ConnGraphcconngr 30165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-edg 29028 df-uhgr 29038 df-nbgr 29313 df-uvtx 29366 df-cplgr 29391 df-wlks 29580 df-wlkson 29581 df-trls 29671 df-trlson 29672 df-pths 29694 df-pthson 29696 df-conngr 30166 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |