MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusconngr Structured version   Visualization version   GIF version

Theorem cusconngr 30214
Description: A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
cusconngr ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph)

Proof of Theorem cusconngr
Dummy variables 𝑐 𝑒 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2734 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iscplgredg 29443 . . . 4 (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒))
4 simp-4l 782 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UHGraph)
5 simpr 484 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → 𝑘 ∈ (Vtx‘𝐺))
6 eldifi 4148 . . . . . . . . . . 11 (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘}) → 𝑛 ∈ (Vtx‘𝐺))
75, 6anim12i 612 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)))
87adantr 480 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)))
98adantr 480 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)))
10 id 22 . . . . . . . . . . 11 (𝑒 ∈ (Edg‘𝐺) → 𝑒 ∈ (Edg‘𝐺))
11 sseq2 4029 . . . . . . . . . . . 12 (𝑐 = 𝑒 → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒))
1211adantl 481 . . . . . . . . . . 11 ((𝑒 ∈ (Edg‘𝐺) ∧ 𝑐 = 𝑒) → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒))
1310, 12rspcedv 3624 . . . . . . . . . 10 (𝑒 ∈ (Edg‘𝐺) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐))
1413adantl 481 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐))
1514imp 406 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)
161, 21pthon2v 30176 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)) ∧ ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) → ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
174, 9, 15, 16syl3anc 1371 . . . . . . 7 (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
1817rexlimdva2 3159 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1918ralimdva 3169 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2019ralimdva 3169 . . . 4 (𝐺 ∈ UHGraph → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
213, 20sylbid 240 . . 3 (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2221imp 406 . 2 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
231isconngr1 30213 . . 3 (𝐺 ∈ UHGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2423adantr 480 . 2 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2522, 24mpbird 257 1 ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  wcel 2103  wral 3063  wrex 3072  cdif 3967  wss 3970  {csn 4648  {cpr 4650   class class class wbr 5169  cfv 6572  (class class class)co 7445  Vtxcvtx 29022  Edgcedg 29073  UHGraphcuhgr 29082  ComplGraphccplgr 29435  PathsOncpthson 29741  ConnGraphcconngr 30209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-map 8882  df-pm 8883  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-fzo 13708  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-s2 14893  df-edg 29074  df-uhgr 29084  df-nbgr 29359  df-uvtx 29412  df-cplgr 29437  df-wlks 29626  df-wlkson 29627  df-trls 29719  df-trlson 29720  df-pths 29743  df-pthson 29745  df-conngr 30210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator