![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusconngr | Structured version Visualization version GIF version |
Description: A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
Ref | Expression |
---|---|
cusconngr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2734 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | iscplgredg 29443 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒)) |
4 | simp-4l 782 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UHGraph) | |
5 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → 𝑘 ∈ (Vtx‘𝐺)) | |
6 | eldifi 4148 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘}) → 𝑛 ∈ (Vtx‘𝐺)) | |
7 | 5, 6 | anim12i 612 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
10 | id 22 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (Edg‘𝐺) → 𝑒 ∈ (Edg‘𝐺)) | |
11 | sseq2 4029 | . . . . . . . . . . . 12 ⊢ (𝑐 = 𝑒 → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒)) | |
12 | 11 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ (Edg‘𝐺) ∧ 𝑐 = 𝑒) → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒)) |
13 | 10, 12 | rspcedv 3624 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (Edg‘𝐺) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)) |
14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)) |
15 | 14 | imp 406 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) |
16 | 1, 2 | 1pthon2v 30176 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)) ∧ ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
17 | 4, 9, 15, 16 | syl3anc 1371 | . . . . . . 7 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
18 | 17 | rexlimdva2 3159 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
19 | 18 | ralimdva 3169 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
20 | 19 | ralimdva 3169 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
21 | 3, 20 | sylbid 240 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
22 | 21 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
23 | 1 | isconngr1 30213 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
24 | 23 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
25 | 22, 24 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2103 ∀wral 3063 ∃wrex 3072 ∖ cdif 3967 ⊆ wss 3970 {csn 4648 {cpr 4650 class class class wbr 5169 ‘cfv 6572 (class class class)co 7445 Vtxcvtx 29022 Edgcedg 29073 UHGraphcuhgr 29082 ComplGraphccplgr 29435 PathsOncpthson 29741 ConnGraphcconngr 30209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-map 8882 df-pm 8883 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 df-fzo 13708 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-s2 14893 df-edg 29074 df-uhgr 29084 df-nbgr 29359 df-uvtx 29412 df-cplgr 29437 df-wlks 29626 df-wlkson 29627 df-trls 29719 df-trlson 29720 df-pths 29743 df-pthson 29745 df-conngr 30210 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |