| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusconngr | Structured version Visualization version GIF version | ||
| Description: A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
| Ref | Expression |
|---|---|
| cusconngr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | iscplgredg 29350 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒)) |
| 4 | simp-4l 782 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UHGraph) | |
| 5 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → 𝑘 ∈ (Vtx‘𝐺)) | |
| 6 | eldifi 4096 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘}) → 𝑛 ∈ (Vtx‘𝐺)) | |
| 7 | 5, 6 | anim12i 613 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺))) |
| 10 | id 22 | . . . . . . . . . . 11 ⊢ (𝑒 ∈ (Edg‘𝐺) → 𝑒 ∈ (Edg‘𝐺)) | |
| 11 | sseq2 3975 | . . . . . . . . . . . 12 ⊢ (𝑐 = 𝑒 → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒)) | |
| 12 | 11 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑒 ∈ (Edg‘𝐺) ∧ 𝑐 = 𝑒) → ({𝑘, 𝑛} ⊆ 𝑐 ↔ {𝑘, 𝑛} ⊆ 𝑒)) |
| 13 | 10, 12 | rspcedv 3584 | . . . . . . . . . 10 ⊢ (𝑒 ∈ (Edg‘𝐺) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)) |
| 14 | 13 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) → ({𝑘, 𝑛} ⊆ 𝑒 → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐)) |
| 15 | 14 | imp 406 | . . . . . . . 8 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) |
| 16 | 1, 2 | 1pthon2v 30088 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ (𝑘 ∈ (Vtx‘𝐺) ∧ 𝑛 ∈ (Vtx‘𝐺)) ∧ ∃𝑐 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑐) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 17 | 4, 9, 15, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (((((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) ∧ 𝑒 ∈ (Edg‘𝐺)) ∧ {𝑘, 𝑛} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 18 | 17 | rexlimdva2 3137 | . . . . . 6 ⊢ (((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) ∧ 𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})) → (∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 19 | 18 | ralimdva 3146 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ (Vtx‘𝐺)) → (∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 20 | 19 | ralimdva 3146 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑒 ∈ (Edg‘𝐺){𝑘, 𝑛} ⊆ 𝑒 → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 21 | 3, 20 | sylbid 240 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ComplGraph → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 22 | 21 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 23 | 1 | isconngr1 30125 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 25 | 22, 24 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ ConnGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∖ cdif 3913 ⊆ wss 3916 {csn 4591 {cpr 4593 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Vtxcvtx 28929 Edgcedg 28980 UHGraphcuhgr 28989 ComplGraphccplgr 29342 PathsOncpthson 29648 ConnGraphcconngr 30121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-hash 14302 df-word 14485 df-concat 14542 df-s1 14567 df-s2 14820 df-edg 28981 df-uhgr 28991 df-nbgr 29266 df-uvtx 29319 df-cplgr 29344 df-wlks 29533 df-wlkson 29534 df-trls 29626 df-trlson 29627 df-pths 29650 df-pthson 29652 df-conngr 30122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |