| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ov2ssiunov2 | Structured version Visualization version GIF version | ||
| Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14956 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
| Ref | Expression |
|---|---|
| ov2ssiunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| Ref | Expression |
|---|---|
| ov2ssiunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝑀 ∈ 𝑁) | |
| 2 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀) | |
| 3 | 2 | oveq2d 7357 | . . . . 5 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑅 ↑ 𝑛) = (𝑅 ↑ 𝑀)) |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 ↑ 𝑛) ↔ 𝑥 ∈ (𝑅 ↑ 𝑀))) |
| 5 | 1, 4 | rspcedv 3568 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
| 6 | ov2ssiunov2.def | . . . . . 6 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
| 7 | 6 | eliunov2 43691 | . . . . 5 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
| 8 | 7 | biimprd 248 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
| 9 | 8 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
| 10 | 5, 9 | syld 47 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → 𝑥 ∈ (𝐶‘𝑅))) |
| 11 | 10 | ssrdv 3938 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 Vcvv 3434 ⊆ wss 3900 ∪ ciun 4939 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 |
| This theorem is referenced by: dftrcl3 43732 dfrtrcl3 43745 |
| Copyright terms: Public domain | W3C validator |