Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ov2ssiunov2 Structured version   Visualization version   GIF version

Theorem ov2ssiunov2 41629
Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14867 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
ov2ssiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
ov2ssiunov2 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑅 𝑀) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑛,𝑀   𝑅,𝑟,𝑛   𝑈,𝑛   𝑛,𝑉
Allowed substitution hints:   𝑈(𝑟)   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem ov2ssiunov2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . . 4 ((𝑅𝑈𝑁𝑉𝑀𝑁) → 𝑀𝑁)
2 simpr 485 . . . . . 6 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀)
32oveq2d 7353 . . . . 5 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → (𝑅 𝑛) = (𝑅 𝑀))
43eleq2d 2822 . . . 4 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 𝑛) ↔ 𝑥 ∈ (𝑅 𝑀)))
51, 4rspcedv 3563 . . 3 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑥 ∈ (𝑅 𝑀) → ∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛)))
6 ov2ssiunov2.def . . . . . 6 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
76eliunov2 41608 . . . . 5 ((𝑅𝑈𝑁𝑉) → (𝑥 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛)))
87biimprd 247 . . . 4 ((𝑅𝑈𝑁𝑉) → (∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛) → 𝑥 ∈ (𝐶𝑅)))
983adant3 1131 . . 3 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛) → 𝑥 ∈ (𝐶𝑅)))
105, 9syld 47 . 2 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑥 ∈ (𝑅 𝑀) → 𝑥 ∈ (𝐶𝑅)))
1110ssrdv 3938 1 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑅 𝑀) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wrex 3070  Vcvv 3441  wss 3898   ciun 4941  cmpt 5175  cfv 6479  (class class class)co 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340
This theorem is referenced by:  dftrcl3  41649  dfrtrcl3  41662
  Copyright terms: Public domain W3C validator