| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ov2ssiunov2 | Structured version Visualization version GIF version | ||
| Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 15096 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
| Ref | Expression |
|---|---|
| ov2ssiunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
| Ref | Expression |
|---|---|
| ov2ssiunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1139 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝑀 ∈ 𝑁) | |
| 2 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀) | |
| 3 | 2 | oveq2d 7447 | . . . . 5 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑅 ↑ 𝑛) = (𝑅 ↑ 𝑀)) |
| 4 | 3 | eleq2d 2827 | . . . 4 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 ↑ 𝑛) ↔ 𝑥 ∈ (𝑅 ↑ 𝑀))) |
| 5 | 1, 4 | rspcedv 3615 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
| 6 | ov2ssiunov2.def | . . . . . 6 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
| 7 | 6 | eliunov2 43692 | . . . . 5 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
| 8 | 7 | biimprd 248 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
| 9 | 8 | 3adant3 1133 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
| 10 | 5, 9 | syld 47 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → 𝑥 ∈ (𝐶‘𝑅))) |
| 11 | 10 | ssrdv 3989 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ∪ ciun 4991 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: dftrcl3 43733 dfrtrcl3 43746 |
| Copyright terms: Public domain | W3C validator |