Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ov2ssiunov2 | Structured version Visualization version GIF version |
Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14867 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
Ref | Expression |
---|---|
ov2ssiunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
Ref | Expression |
---|---|
ov2ssiunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝑀 ∈ 𝑁) | |
2 | simpr 485 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀) | |
3 | 2 | oveq2d 7353 | . . . . 5 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑅 ↑ 𝑛) = (𝑅 ↑ 𝑀)) |
4 | 3 | eleq2d 2822 | . . . 4 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 ↑ 𝑛) ↔ 𝑥 ∈ (𝑅 ↑ 𝑀))) |
5 | 1, 4 | rspcedv 3563 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
6 | ov2ssiunov2.def | . . . . . 6 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
7 | 6 | eliunov2 41608 | . . . . 5 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
8 | 7 | biimprd 247 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
9 | 8 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
10 | 5, 9 | syld 47 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → 𝑥 ∈ (𝐶‘𝑅))) |
11 | 10 | ssrdv 3938 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 Vcvv 3441 ⊆ wss 3898 ∪ ciun 4941 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 |
This theorem is referenced by: dftrcl3 41649 dfrtrcl3 41662 |
Copyright terms: Public domain | W3C validator |