Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ov2ssiunov2 Structured version   Visualization version   GIF version

Theorem ov2ssiunov2 43683
Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 15000 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
ov2ssiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
ov2ssiunov2 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑅 𝑀) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑛,𝑀   𝑅,𝑟,𝑛   𝑈,𝑛   𝑛,𝑉
Allowed substitution hints:   𝑈(𝑟)   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem ov2ssiunov2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . 4 ((𝑅𝑈𝑁𝑉𝑀𝑁) → 𝑀𝑁)
2 simpr 484 . . . . . 6 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀)
32oveq2d 7385 . . . . 5 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → (𝑅 𝑛) = (𝑅 𝑀))
43eleq2d 2814 . . . 4 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 𝑛) ↔ 𝑥 ∈ (𝑅 𝑀)))
51, 4rspcedv 3578 . . 3 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑥 ∈ (𝑅 𝑀) → ∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛)))
6 ov2ssiunov2.def . . . . . 6 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
76eliunov2 43662 . . . . 5 ((𝑅𝑈𝑁𝑉) → (𝑥 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛)))
87biimprd 248 . . . 4 ((𝑅𝑈𝑁𝑉) → (∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛) → 𝑥 ∈ (𝐶𝑅)))
983adant3 1132 . . 3 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛) → 𝑥 ∈ (𝐶𝑅)))
105, 9syld 47 . 2 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑥 ∈ (𝑅 𝑀) → 𝑥 ∈ (𝐶𝑅)))
1110ssrdv 3949 1 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑅 𝑀) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  wss 3911   ciun 4951  cmpt 5183  cfv 6499  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372
This theorem is referenced by:  dftrcl3  43703  dfrtrcl3  43716
  Copyright terms: Public domain W3C validator