![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ov2ssiunov2 | Structured version Visualization version GIF version |
Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 15010 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
Ref | Expression |
---|---|
ov2ssiunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
Ref | Expression |
---|---|
ov2ssiunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝑀 ∈ 𝑁) | |
2 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀) | |
3 | 2 | oveq2d 7421 | . . . . 5 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑅 ↑ 𝑛) = (𝑅 ↑ 𝑀)) |
4 | 3 | eleq2d 2813 | . . . 4 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 ↑ 𝑛) ↔ 𝑥 ∈ (𝑅 ↑ 𝑀))) |
5 | 1, 4 | rspcedv 3599 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
6 | ov2ssiunov2.def | . . . . . 6 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
7 | 6 | eliunov2 43011 | . . . . 5 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
8 | 7 | biimprd 247 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
9 | 8 | 3adant3 1129 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
10 | 5, 9 | syld 47 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → 𝑥 ∈ (𝐶‘𝑅))) |
11 | 10 | ssrdv 3983 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 Vcvv 3468 ⊆ wss 3943 ∪ ciun 4990 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 |
This theorem is referenced by: dftrcl3 43052 dfrtrcl3 43065 |
Copyright terms: Public domain | W3C validator |