Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ov2ssiunov2 | Structured version Visualization version GIF version |
Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 14749 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
Ref | Expression |
---|---|
ov2ssiunov2.def | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) |
Ref | Expression |
---|---|
ov2ssiunov2 | ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → 𝑀 ∈ 𝑁) | |
2 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀) | |
3 | 2 | oveq2d 7284 | . . . . 5 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑅 ↑ 𝑛) = (𝑅 ↑ 𝑀)) |
4 | 3 | eleq2d 2825 | . . . 4 ⊢ (((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 ↑ 𝑛) ↔ 𝑥 ∈ (𝑅 ↑ 𝑀))) |
5 | 1, 4 | rspcedv 3552 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
6 | ov2ssiunov2.def | . . . . . 6 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) | |
7 | 6 | eliunov2 41240 | . . . . 5 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛))) |
8 | 7 | biimprd 247 | . . . 4 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
9 | 8 | 3adant3 1130 | . . 3 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (∃𝑛 ∈ 𝑁 𝑥 ∈ (𝑅 ↑ 𝑛) → 𝑥 ∈ (𝐶‘𝑅))) |
10 | 5, 9 | syld 47 | . 2 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑥 ∈ (𝑅 ↑ 𝑀) → 𝑥 ∈ (𝐶‘𝑅))) |
11 | 10 | ssrdv 3931 | 1 ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 ∪ ciun 4929 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 |
This theorem is referenced by: dftrcl3 41281 dfrtrcl3 41294 |
Copyright terms: Public domain | W3C validator |