Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspecval | Structured version Visualization version GIF version |
Description: Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
rspecval | ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6663 | . . 3 ⊢ (𝑟 = 𝑅 → (IDLsrg‘𝑟) = (IDLsrg‘𝑅)) | |
2 | fveq2 6663 | . . 3 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
3 | 1, 2 | oveq12d 7174 | . 2 ⊢ (𝑟 = 𝑅 → ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
4 | df-rspec 31347 | . 2 ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟))) | |
5 | ovex 7189 | . 2 ⊢ ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6764 | 1 ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 ↾s cress 16556 Ringcrg 19379 PrmIdealcprmidl 31144 IDLsrgcidlsrg 31179 Speccrspec 31346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-ov 7159 df-rspec 31347 |
This theorem is referenced by: rspecbas 31349 rspectset 31350 rspectopn 31351 |
Copyright terms: Public domain | W3C validator |