Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspecval Structured version   Visualization version   GIF version

Theorem rspecval 33877
Description: Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.)
Assertion
Ref Expression
rspecval (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))

Proof of Theorem rspecval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑟 = 𝑅 → (IDLsrg‘𝑟) = (IDLsrg‘𝑅))
2 fveq2 6822 . . 3 (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅))
31, 2oveq12d 7364 . 2 (𝑟 = 𝑅 → ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
4 df-rspec 33876 . 2 Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)))
5 ovex 7379 . 2 ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) ∈ V
63, 4, 5fvmpt 6929 1 (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  s cress 17141  Ringcrg 20151  PrmIdealcprmidl 33400  IDLsrgcidlsrg 33465  Speccrspec 33875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-rspec 33876
This theorem is referenced by:  rspecbas  33878  rspectset  33879  rspectopn  33880
  Copyright terms: Public domain W3C validator