Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspecval Structured version   Visualization version   GIF version

Theorem rspecval 33860
Description: Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.)
Assertion
Ref Expression
rspecval (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))

Proof of Theorem rspecval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6860 . . 3 (𝑟 = 𝑅 → (IDLsrg‘𝑟) = (IDLsrg‘𝑅))
2 fveq2 6860 . . 3 (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅))
31, 2oveq12d 7407 . 2 (𝑟 = 𝑅 → ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
4 df-rspec 33859 . 2 Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)))
5 ovex 7422 . 2 ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) ∈ V
63, 4, 5fvmpt 6970 1 (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  s cress 17206  Ringcrg 20148  PrmIdealcprmidl 33412  IDLsrgcidlsrg 33477  Speccrspec 33858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-rspec 33859
This theorem is referenced by:  rspecbas  33861  rspectset  33862  rspectopn  33863
  Copyright terms: Public domain W3C validator