Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspecval | Structured version Visualization version GIF version |
Description: Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
rspecval | ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝑟 = 𝑅 → (IDLsrg‘𝑟) = (IDLsrg‘𝑅)) | |
2 | fveq2 6756 | . . 3 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
3 | 1, 2 | oveq12d 7273 | . 2 ⊢ (𝑟 = 𝑅 → ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
4 | df-rspec 31715 | . 2 ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟))) | |
5 | ovex 7288 | . 2 ⊢ ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6857 | 1 ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ↾s cress 16867 Ringcrg 19698 PrmIdealcprmidl 31512 IDLsrgcidlsrg 31547 Speccrspec 31714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-rspec 31715 |
This theorem is referenced by: rspecbas 31717 rspectset 31718 rspectopn 31719 |
Copyright terms: Public domain | W3C validator |