![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspecval | Structured version Visualization version GIF version |
Description: Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
rspecval | ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6894 | . . 3 ⊢ (𝑟 = 𝑅 → (IDLsrg‘𝑟) = (IDLsrg‘𝑅)) | |
2 | fveq2 6894 | . . 3 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
3 | 1, 2 | oveq12d 7435 | . 2 ⊢ (𝑟 = 𝑅 → ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
4 | df-rspec 33534 | . 2 ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟))) | |
5 | ovex 7450 | . 2 ⊢ ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) ∈ V | |
6 | 3, 4, 5 | fvmpt 7002 | 1 ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6547 (class class class)co 7417 ↾s cress 17208 Ringcrg 20177 PrmIdealcprmidl 33213 IDLsrgcidlsrg 33273 Speccrspec 33533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-rspec 33534 |
This theorem is referenced by: rspecbas 33536 rspectset 33537 rspectopn 33538 |
Copyright terms: Public domain | W3C validator |