| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspecval | Structured version Visualization version GIF version | ||
| Description: Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| Ref | Expression |
|---|---|
| rspecval | ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6905 | . . 3 ⊢ (𝑟 = 𝑅 → (IDLsrg‘𝑟) = (IDLsrg‘𝑅)) | |
| 2 | fveq2 6905 | . . 3 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
| 3 | 1, 2 | oveq12d 7450 | . 2 ⊢ (𝑟 = 𝑅 → ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
| 4 | df-rspec 33863 | . 2 ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟))) | |
| 5 | ovex 7465 | . 2 ⊢ ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 7015 | 1 ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ↾s cress 17275 Ringcrg 20231 PrmIdealcprmidl 33464 IDLsrgcidlsrg 33529 Speccrspec 33862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-rspec 33863 |
| This theorem is referenced by: rspecbas 33865 rspectset 33866 rspectopn 33867 |
| Copyright terms: Public domain | W3C validator |