![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspecbas | Structured version Visualization version GIF version |
Description: The prime ideals form the base of the spectrum of a ring. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
Ref | Expression |
---|---|
rspecbas.1 | ⊢ 𝑆 = (Spec‘𝑅) |
Ref | Expression |
---|---|
rspecbas | ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmidlssidl 33430 | . . . 4 ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (LIdeal‘𝑅)) | |
2 | eqid 2734 | . . . . 5 ⊢ (IDLsrg‘𝑅) = (IDLsrg‘𝑅) | |
3 | eqid 2734 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
4 | 2, 3 | idlsrgbas 33489 | . . . 4 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘(IDLsrg‘𝑅))) |
5 | 1, 4 | sseqtrd 4043 | . . 3 ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) ⊆ (Base‘(IDLsrg‘𝑅))) |
6 | eqid 2734 | . . . 4 ⊢ ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)) | |
7 | eqid 2734 | . . . 4 ⊢ (Base‘(IDLsrg‘𝑅)) = (Base‘(IDLsrg‘𝑅)) | |
8 | 6, 7 | ressbas2 17291 | . . 3 ⊢ ((PrmIdeal‘𝑅) ⊆ (Base‘(IDLsrg‘𝑅)) → (PrmIdeal‘𝑅) = (Base‘((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))) |
9 | 5, 8 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = (Base‘((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))) |
10 | rspecbas.1 | . . . 4 ⊢ 𝑆 = (Spec‘𝑅) | |
11 | rspecval 33802 | . . . 4 ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) | |
12 | 10, 11 | eqtrid 2786 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑆 = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) |
13 | 12 | fveq2d 6923 | . 2 ⊢ (𝑅 ∈ Ring → (Base‘𝑆) = (Base‘((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅)))) |
14 | 9, 13 | eqtr4d 2777 | 1 ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = (Base‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 ⊆ wss 3970 ‘cfv 6572 (class class class)co 7445 Basecbs 17253 ↾s cress 17282 Ringcrg 20255 LIdealclidl 21234 PrmIdealcprmidl 33420 IDLsrgcidlsrg 33485 Speccrspec 33800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-z 12636 df-dec 12755 df-uz 12900 df-fz 13564 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-tset 17325 df-ple 17326 df-prmidl 33421 df-idlsrg 33486 df-rspec 33801 |
This theorem is referenced by: rspectps 33821 |
Copyright terms: Public domain | W3C validator |