Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmrsubrn Structured version   Visualization version   GIF version

Theorem elmrsubrn 35495
Description: Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 35524.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
mrsubcn.v 𝑉 = (mVR‘𝑇)
mrsubcn.c 𝐶 = (mCN‘𝑇)
Assertion
Ref Expression
elmrsubrn (𝑇𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑐,𝑦,𝐶   𝑥,𝑅,𝑦   𝑆,𝑐,𝑥,𝑦   𝑥,𝑇,𝑦   𝐹,𝑐,𝑥,𝑦   𝑉,𝑐,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑅(𝑐)   𝑇(𝑐)   𝑊(𝑐)

Proof of Theorem elmrsubrn
Dummy variables 𝑟 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubccat.s . . . 4 𝑆 = (mRSubst‘𝑇)
2 mrsubccat.r . . . 4 𝑅 = (mREx‘𝑇)
31, 2mrsubf 35492 . . 3 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
4 mrsubcn.v . . . . 5 𝑉 = (mVR‘𝑇)
5 mrsubcn.c . . . . 5 𝐶 = (mCN‘𝑇)
61, 2, 4, 5mrsubcn 35494 . . . 4 ((𝐹 ∈ ran 𝑆𝑐 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
76ralrimiva 3121 . . 3 (𝐹 ∈ ran 𝑆 → ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
81, 2mrsubccat 35493 . . . . 5 ((𝐹 ∈ ran 𝑆𝑥𝑅𝑦𝑅) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
983expb 1120 . . . 4 ((𝐹 ∈ ran 𝑆 ∧ (𝑥𝑅𝑦𝑅)) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
109ralrimivva 3172 . . 3 (𝐹 ∈ ran 𝑆 → ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
113, 7, 103jca 1128 . 2 (𝐹 ∈ ran 𝑆 → (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
125, 4, 2mrexval 35476 . . . . . . 7 (𝑇𝑊𝑅 = Word (𝐶𝑉))
1312adantr 480 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝑅 = Word (𝐶𝑉))
14 s1eq 14525 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → ⟨“𝑤”⟩ = ⟨“𝑣”⟩)
1514fveq2d 6830 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝐹‘⟨“𝑤”⟩) = (𝐹‘⟨“𝑣”⟩))
16 eqid 2729 . . . . . . . . . . . 12 (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) = (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))
17 fvex 6839 . . . . . . . . . . . 12 (𝐹‘⟨“𝑣”⟩) ∈ V
1815, 16, 17fvmpt 6934 . . . . . . . . . . 11 (𝑣𝑉 → ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣) = (𝐹‘⟨“𝑣”⟩))
1918adantl 481 . . . . . . . . . 10 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝑉) → ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣) = (𝐹‘⟨“𝑣”⟩))
20 difun2 4434 . . . . . . . . . . . . . . 15 ((𝐶𝑉) ∖ 𝑉) = (𝐶𝑉)
2120eleq2i 2820 . . . . . . . . . . . . . 14 (𝑣 ∈ ((𝐶𝑉) ∖ 𝑉) ↔ 𝑣 ∈ (𝐶𝑉))
22 eldif 3915 . . . . . . . . . . . . . 14 (𝑣 ∈ ((𝐶𝑉) ∖ 𝑉) ↔ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉))
2321, 22bitr3i 277 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐶𝑉) ↔ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉))
24 simpr2 1196 . . . . . . . . . . . . . 14 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
25 s1eq 14525 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑣 → ⟨“𝑐”⟩ = ⟨“𝑣”⟩)
2625fveq2d 6830 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑣 → (𝐹‘⟨“𝑐”⟩) = (𝐹‘⟨“𝑣”⟩))
2726, 25eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → ((𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ↔ (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩))
2827rspccva 3578 . . . . . . . . . . . . . 14 ((∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
2924, 28sylan 580 . . . . . . . . . . . . 13 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3023, 29sylan2br 595 . . . . . . . . . . . 12 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3130anassrs 467 . . . . . . . . . . 11 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝑉) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3231eqcomd 2735 . . . . . . . . . 10 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝑉) → ⟨“𝑣”⟩ = (𝐹‘⟨“𝑣”⟩))
3319, 32ifeqda 4515 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩) = (𝐹‘⟨“𝑣”⟩))
3433mpteq2dva 5188 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
3534coeq1d 5808 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟) = ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))
3635oveq2d 7369 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟)) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟)))
3713, 36mpteq12dv 5182 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))) = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
38 elun2 4136 . . . . . . . 8 (𝑣𝑉𝑣 ∈ (𝐶𝑉))
39 simplr1 1216 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝑅𝑅)
40 simpr 484 . . . . . . . . . . 11 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝑣 ∈ (𝐶𝑉))
4140s1cld 14528 . . . . . . . . . 10 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
4212ad2antrr 726 . . . . . . . . . 10 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
4341, 42eleqtrrd 2831 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ⟨“𝑣”⟩ ∈ 𝑅)
4439, 43ffvelcdmd 7023 . . . . . . . 8 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) ∈ 𝑅)
4538, 44sylan2 593 . . . . . . 7 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣𝑉) → (𝐹‘⟨“𝑣”⟩) ∈ 𝑅)
4615cbvmptv 5199 . . . . . . 7 (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) = (𝑣𝑉 ↦ (𝐹‘⟨“𝑣”⟩))
4745, 46fmptd 7052 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅)
48 ssid 3960 . . . . . 6 𝑉𝑉
49 eqid 2729 . . . . . . 7 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
505, 4, 2, 1, 49mrsubfval 35483 . . . . . 6 (((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) = (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))))
5147, 48, 50sylancl 586 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) = (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))))
525fvexi 6840 . . . . . . . . 9 𝐶 ∈ V
534fvexi 6840 . . . . . . . . 9 𝑉 ∈ V
5452, 53unex 7684 . . . . . . . 8 (𝐶𝑉) ∈ V
5549frmdmnd 18751 . . . . . . . 8 ((𝐶𝑉) ∈ V → (freeMnd‘(𝐶𝑉)) ∈ Mnd)
5654, 55ax-mp 5 . . . . . . 7 (freeMnd‘(𝐶𝑉)) ∈ Mnd
5756a1i 11 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (freeMnd‘(𝐶𝑉)) ∈ Mnd)
5854a1i 11 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐶𝑉) ∈ V)
5944, 42eleqtrd 2830 . . . . . . 7 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
6059fmpttd 7053 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
61 simpr1 1195 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹:𝑅𝑅)
6213, 13feq23d 6651 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹:𝑅𝑅𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉)))
6361, 62mpbid 232 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉))
64 simpr3 1197 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
65 simprl 770 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
6612adantr 480 . . . . . . . . . . . . . . . 16 ((𝑇𝑊𝐹:𝑅𝑅) → 𝑅 = Word (𝐶𝑉))
6766adantr 480 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅 = Word (𝐶𝑉))
6865, 67eleqtrd 2830 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥 ∈ Word (𝐶𝑉))
69 simprr 772 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
7069, 67eleqtrd 2830 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦 ∈ Word (𝐶𝑉))
71 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
7249, 71frmdbas 18744 . . . . . . . . . . . . . . . . 17 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
7354, 72ax-mp 5 . . . . . . . . . . . . . . . 16 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
7473eqcomi 2738 . . . . . . . . . . . . . . 15 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
75 eqid 2729 . . . . . . . . . . . . . . 15 (+g‘(freeMnd‘(𝐶𝑉))) = (+g‘(freeMnd‘(𝐶𝑉)))
7649, 74, 75frmdadd 18747 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (𝐶𝑉) ∧ 𝑦 ∈ Word (𝐶𝑉)) → (𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦) = (𝑥 ++ 𝑦))
7768, 70, 76syl2anc 584 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦) = (𝑥 ++ 𝑦))
7877fveq2d 6830 . . . . . . . . . . . 12 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = (𝐹‘(𝑥 ++ 𝑦)))
79 ffvelcdm 7019 . . . . . . . . . . . . . . 15 ((𝐹:𝑅𝑅𝑥𝑅) → (𝐹𝑥) ∈ 𝑅)
8079ad2ant2lr 748 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑥) ∈ 𝑅)
8180, 67eleqtrd 2830 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑥) ∈ Word (𝐶𝑉))
82 ffvelcdm 7019 . . . . . . . . . . . . . . 15 ((𝐹:𝑅𝑅𝑦𝑅) → (𝐹𝑦) ∈ 𝑅)
8382ad2ant2l 746 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑦) ∈ 𝑅)
8483, 67eleqtrd 2830 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑦) ∈ Word (𝐶𝑉))
8549, 74, 75frmdadd 18747 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ Word (𝐶𝑉) ∧ (𝐹𝑦) ∈ Word (𝐶𝑉)) → ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
8681, 84, 85syl2anc 584 . . . . . . . . . . . 12 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
8778, 86eqeq12d 2745 . . . . . . . . . . 11 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → ((𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
88872ralbidva 3191 . . . . . . . . . 10 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
8966raleqdv 3290 . . . . . . . . . . 11 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9066, 89raleqbidv 3310 . . . . . . . . . 10 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9188, 90bitr3d 281 . . . . . . . . 9 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
92913ad2antr1 1189 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9364, 92mpbid 232 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)))
94 wrd0 14464 . . . . . . . . . . . 12 ∅ ∈ Word (𝐶𝑉)
95 ffvelcdm 7019 . . . . . . . . . . . 12 ((𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∅ ∈ Word (𝐶𝑉)) → (𝐹‘∅) ∈ Word (𝐶𝑉))
9663, 94, 95sylancl 586 . . . . . . . . . . 11 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) ∈ Word (𝐶𝑉))
97 lencl 14458 . . . . . . . . . . 11 ((𝐹‘∅) ∈ Word (𝐶𝑉) → (♯‘(𝐹‘∅)) ∈ ℕ0)
9896, 97syl 17 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) ∈ ℕ0)
9998nn0cnd 12465 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) ∈ ℂ)
100 0cnd 11127 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 0 ∈ ℂ)
10199addridd 11334 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((♯‘(𝐹‘∅)) + 0) = (♯‘(𝐹‘∅)))
10294, 13eleqtrrid 2835 . . . . . . . . . . . 12 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∅ ∈ 𝑅)
103 fvoveq1 7376 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝐹‘(𝑥 ++ 𝑦)) = (𝐹‘(∅ ++ 𝑦)))
104 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
105104oveq1d 7368 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝐹𝑥) ++ (𝐹𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦)))
106103, 105eqeq12d 2745 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ (𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦))))
107 oveq2 7361 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (∅ ++ 𝑦) = (∅ ++ ∅))
108 ccatidid 14515 . . . . . . . . . . . . . . . 16 (∅ ++ ∅) = ∅
109107, 108eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∅ ++ 𝑦) = ∅)
110109fveq2d 6830 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐹‘(∅ ++ 𝑦)) = (𝐹‘∅))
111 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
112111oveq2d 7369 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((𝐹‘∅) ++ (𝐹𝑦)) = ((𝐹‘∅) ++ (𝐹‘∅)))
113110, 112eqeq12d 2745 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦)) ↔ (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅))))
114106, 113rspc2va 3591 . . . . . . . . . . . 12 (((∅ ∈ 𝑅 ∧ ∅ ∈ 𝑅) ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))
115102, 102, 64, 114syl21anc 837 . . . . . . . . . . 11 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))
116115fveq2d 6830 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) = (♯‘((𝐹‘∅) ++ (𝐹‘∅))))
117 ccatlen 14500 . . . . . . . . . . 11 (((𝐹‘∅) ∈ Word (𝐶𝑉) ∧ (𝐹‘∅) ∈ Word (𝐶𝑉)) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))))
11896, 96, 117syl2anc 584 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))))
119101, 116, 1183eqtrrd 2769 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))) = ((♯‘(𝐹‘∅)) + 0))
12099, 99, 100, 119addcanad 11339 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) = 0)
121 fvex 6839 . . . . . . . . 9 (𝐹‘∅) ∈ V
122 hasheq0 14288 . . . . . . . . 9 ((𝐹‘∅) ∈ V → ((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) = ∅))
123121, 122ax-mp 5 . . . . . . . 8 ((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) = ∅)
124120, 123sylib 218 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) = ∅)
12556, 56pm3.2i 470 . . . . . . . 8 ((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶𝑉)) ∈ Mnd)
12649frmd0 18752 . . . . . . . . 9 ∅ = (0g‘(freeMnd‘(𝐶𝑉)))
12774, 74, 75, 75, 126, 126ismhm 18677 . . . . . . . 8 (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ↔ (((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶𝑉)) ∈ Mnd) ∧ (𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ∧ (𝐹‘∅) = ∅)))
128125, 127mpbiran 709 . . . . . . 7 (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ↔ (𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ∧ (𝐹‘∅) = ∅))
12963, 93, 124, 128syl3anbrc 1344 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))))
130 eqid 2729 . . . . . . . . . 10 (varFMnd‘(𝐶𝑉)) = (varFMnd‘(𝐶𝑉))
131130vrmdf 18750 . . . . . . . . 9 ((𝐶𝑉) ∈ V → (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉))
13254, 131ax-mp 5 . . . . . . . 8 (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉)
133 fcompt 7071 . . . . . . . 8 ((𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉)) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))))
13463, 132, 133sylancl 586 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))))
135130vrmdval 18749 . . . . . . . . . 10 (((𝐶𝑉) ∈ V ∧ 𝑣 ∈ (𝐶𝑉)) → ((varFMnd‘(𝐶𝑉))‘𝑣) = ⟨“𝑣”⟩)
13654, 135mpan 690 . . . . . . . . 9 (𝑣 ∈ (𝐶𝑉) → ((varFMnd‘(𝐶𝑉))‘𝑣) = ⟨“𝑣”⟩)
137136fveq2d 6830 . . . . . . . 8 (𝑣 ∈ (𝐶𝑉) → (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣)) = (𝐹‘⟨“𝑣”⟩))
138137mpteq2ia 5190 . . . . . . 7 (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩))
139134, 138eqtrdi 2780 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
14049, 74, 130frmdup3lem 18758 . . . . . 6 ((((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (𝐶𝑉) ∈ V ∧ (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) ∧ (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ∧ (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))) → 𝐹 = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
14157, 58, 60, 129, 139, 140syl32anc 1380 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
14237, 51, 1413eqtr4rd 2775 . . . 4 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 = (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))))
1434, 2, 1mrsubff 35487 . . . . . . 7 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
144143ffnd 6657 . . . . . 6 (𝑇𝑊𝑆 Fn (𝑅pm 𝑉))
145144adantr 480 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝑆 Fn (𝑅pm 𝑉))
1462fvexi 6840 . . . . . . 7 𝑅 ∈ V
147 elpm2r 8779 . . . . . . 7 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉)) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
148146, 53, 147mpanl12 702 . . . . . 6 (((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
14947, 48, 148sylancl 586 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
150 fnfvelrn 7018 . . . . 5 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) ∈ ran 𝑆)
151145, 149, 150syl2anc 584 . . . 4 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) ∈ ran 𝑆)
152142, 151eqeltrd 2828 . . 3 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 ∈ ran 𝑆)
153152ex 412 . 2 (𝑇𝑊 → ((𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))) → 𝐹 ∈ ran 𝑆))
15411, 153impbid2 226 1 (𝑇𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  cun 3903  wss 3905  c0 4286  ifcif 4478  cmpt 5176  ran crn 5624  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  pm cpm 8761  0cc0 11028   + caddc 11031  0cn0 12402  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520  Basecbs 17138  +gcplusg 17179   Σg cgsu 17362  Mndcmnd 18626   MndHom cmhm 18673  freeMndcfrmd 18739  varFMndcvrmd 18740  mCNcmcn 35435  mVRcmvar 35436  mRExcmrex 35441  mRSubstcmrsub 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-frmd 18741  df-vrmd 18742  df-mrex 35461  df-mrsub 35465
This theorem is referenced by:  mrsubco  35496
  Copyright terms: Public domain W3C validator