Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmrsubrn Structured version   Visualization version   GIF version

Theorem elmrsubrn 31749
Description: Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 31778.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
mrsubcn.v 𝑉 = (mVR‘𝑇)
mrsubcn.c 𝐶 = (mCN‘𝑇)
Assertion
Ref Expression
elmrsubrn (𝑇𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑐,𝑦,𝐶   𝑥,𝑅,𝑦   𝑆,𝑐,𝑥,𝑦   𝑥,𝑇,𝑦   𝐹,𝑐,𝑥,𝑦   𝑉,𝑐,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑅(𝑐)   𝑇(𝑐)   𝑊(𝑐)

Proof of Theorem elmrsubrn
Dummy variables 𝑟 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubccat.s . . . 4 𝑆 = (mRSubst‘𝑇)
2 mrsubccat.r . . . 4 𝑅 = (mREx‘𝑇)
31, 2mrsubf 31746 . . 3 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
4 mrsubcn.v . . . . 5 𝑉 = (mVR‘𝑇)
5 mrsubcn.c . . . . 5 𝐶 = (mCN‘𝑇)
61, 2, 4, 5mrsubcn 31748 . . . 4 ((𝐹 ∈ ran 𝑆𝑐 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
76ralrimiva 3165 . . 3 (𝐹 ∈ ran 𝑆 → ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
81, 2mrsubccat 31747 . . . . 5 ((𝐹 ∈ ran 𝑆𝑥𝑅𝑦𝑅) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
983expb 1142 . . . 4 ((𝐹 ∈ ran 𝑆 ∧ (𝑥𝑅𝑦𝑅)) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
109ralrimivva 3170 . . 3 (𝐹 ∈ ran 𝑆 → ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
113, 7, 103jca 1151 . 2 (𝐹 ∈ ran 𝑆 → (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
125, 4, 2mrexval 31730 . . . . . . 7 (𝑇𝑊𝑅 = Word (𝐶𝑉))
1312adantr 468 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝑅 = Word (𝐶𝑉))
14 s1eq 13602 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → ⟨“𝑤”⟩ = ⟨“𝑣”⟩)
1514fveq2d 6419 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝐹‘⟨“𝑤”⟩) = (𝐹‘⟨“𝑣”⟩))
16 eqid 2817 . . . . . . . . . . . 12 (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) = (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))
17 fvex 6428 . . . . . . . . . . . 12 (𝐹‘⟨“𝑣”⟩) ∈ V
1815, 16, 17fvmpt 6510 . . . . . . . . . . 11 (𝑣𝑉 → ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣) = (𝐹‘⟨“𝑣”⟩))
1918adantl 469 . . . . . . . . . 10 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝑉) → ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣) = (𝐹‘⟨“𝑣”⟩))
20 difun2 4255 . . . . . . . . . . . . . . 15 ((𝐶𝑉) ∖ 𝑉) = (𝐶𝑉)
2120eleq2i 2888 . . . . . . . . . . . . . 14 (𝑣 ∈ ((𝐶𝑉) ∖ 𝑉) ↔ 𝑣 ∈ (𝐶𝑉))
22 eldif 3790 . . . . . . . . . . . . . 14 (𝑣 ∈ ((𝐶𝑉) ∖ 𝑉) ↔ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉))
2321, 22bitr3i 268 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐶𝑉) ↔ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉))
24 simpr2 1243 . . . . . . . . . . . . . 14 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
25 s1eq 13602 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑣 → ⟨“𝑐”⟩ = ⟨“𝑣”⟩)
2625fveq2d 6419 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑣 → (𝐹‘⟨“𝑐”⟩) = (𝐹‘⟨“𝑣”⟩))
2726, 25eqeq12d 2832 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → ((𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ↔ (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩))
2827rspccva 3512 . . . . . . . . . . . . . 14 ((∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
2924, 28sylan 571 . . . . . . . . . . . . 13 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3023, 29sylan2br 584 . . . . . . . . . . . 12 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3130anassrs 455 . . . . . . . . . . 11 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝑉) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3231eqcomd 2823 . . . . . . . . . 10 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝑉) → ⟨“𝑣”⟩ = (𝐹‘⟨“𝑣”⟩))
3319, 32ifeqda 4325 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩) = (𝐹‘⟨“𝑣”⟩))
3433mpteq2dva 4949 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
3534coeq1d 5496 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟) = ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))
3635oveq2d 6897 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟)) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟)))
3713, 36mpteq12dv 4938 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))) = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
38 elun2 3991 . . . . . . . 8 (𝑣𝑉𝑣 ∈ (𝐶𝑉))
39 simpr1 1241 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹:𝑅𝑅)
4039adantr 468 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝑅𝑅)
41 simpr 473 . . . . . . . . . . 11 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝑣 ∈ (𝐶𝑉))
4241s1cld 13605 . . . . . . . . . 10 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
4312ad2antrr 708 . . . . . . . . . 10 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
4442, 43eleqtrrd 2899 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ⟨“𝑣”⟩ ∈ 𝑅)
4540, 44ffvelrnd 6589 . . . . . . . 8 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) ∈ 𝑅)
4638, 45sylan2 582 . . . . . . 7 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣𝑉) → (𝐹‘⟨“𝑣”⟩) ∈ 𝑅)
4715cbvmptv 4955 . . . . . . 7 (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) = (𝑣𝑉 ↦ (𝐹‘⟨“𝑣”⟩))
4846, 47fmptd 6613 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅)
49 ssid 3831 . . . . . 6 𝑉𝑉
50 eqid 2817 . . . . . . 7 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
515, 4, 2, 1, 50mrsubfval 31737 . . . . . 6 (((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) = (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))))
5248, 49, 51sylancl 576 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) = (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))))
535fvexi 6429 . . . . . . . . 9 𝐶 ∈ V
544fvexi 6429 . . . . . . . . 9 𝑉 ∈ V
5553, 54unex 7193 . . . . . . . 8 (𝐶𝑉) ∈ V
5650frmdmnd 17608 . . . . . . . 8 ((𝐶𝑉) ∈ V → (freeMnd‘(𝐶𝑉)) ∈ Mnd)
5755, 56ax-mp 5 . . . . . . 7 (freeMnd‘(𝐶𝑉)) ∈ Mnd
5857a1i 11 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (freeMnd‘(𝐶𝑉)) ∈ Mnd)
5955a1i 11 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐶𝑉) ∈ V)
6045, 43eleqtrd 2898 . . . . . . 7 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
6160fmpttd 6614 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
6213, 13feq23d 6258 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹:𝑅𝑅𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉)))
6339, 62mpbid 223 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉))
64 simpr3 1245 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
65 simprl 778 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
6612adantr 468 . . . . . . . . . . . . . . . 16 ((𝑇𝑊𝐹:𝑅𝑅) → 𝑅 = Word (𝐶𝑉))
6766adantr 468 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅 = Word (𝐶𝑉))
6865, 67eleqtrd 2898 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥 ∈ Word (𝐶𝑉))
69 simprr 780 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
7069, 67eleqtrd 2898 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦 ∈ Word (𝐶𝑉))
71 eqid 2817 . . . . . . . . . . . . . . . . . 18 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
7250, 71frmdbas 17601 . . . . . . . . . . . . . . . . 17 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
7355, 72ax-mp 5 . . . . . . . . . . . . . . . 16 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
7473eqcomi 2826 . . . . . . . . . . . . . . 15 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
75 eqid 2817 . . . . . . . . . . . . . . 15 (+g‘(freeMnd‘(𝐶𝑉))) = (+g‘(freeMnd‘(𝐶𝑉)))
7650, 74, 75frmdadd 17604 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (𝐶𝑉) ∧ 𝑦 ∈ Word (𝐶𝑉)) → (𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦) = (𝑥 ++ 𝑦))
7768, 70, 76syl2anc 575 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦) = (𝑥 ++ 𝑦))
7877fveq2d 6419 . . . . . . . . . . . 12 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = (𝐹‘(𝑥 ++ 𝑦)))
79 ffvelrn 6586 . . . . . . . . . . . . . . 15 ((𝐹:𝑅𝑅𝑥𝑅) → (𝐹𝑥) ∈ 𝑅)
8079ad2ant2lr 745 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑥) ∈ 𝑅)
8180, 67eleqtrd 2898 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑥) ∈ Word (𝐶𝑉))
82 ffvelrn 6586 . . . . . . . . . . . . . . 15 ((𝐹:𝑅𝑅𝑦𝑅) → (𝐹𝑦) ∈ 𝑅)
8382ad2ant2l 743 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑦) ∈ 𝑅)
8483, 67eleqtrd 2898 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑦) ∈ Word (𝐶𝑉))
8550, 74, 75frmdadd 17604 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ Word (𝐶𝑉) ∧ (𝐹𝑦) ∈ Word (𝐶𝑉)) → ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
8681, 84, 85syl2anc 575 . . . . . . . . . . . 12 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
8778, 86eqeq12d 2832 . . . . . . . . . . 11 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → ((𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
88872ralbidva 3187 . . . . . . . . . 10 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
8966raleqdv 3344 . . . . . . . . . . 11 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9066, 89raleqbidv 3352 . . . . . . . . . 10 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9188, 90bitr3d 272 . . . . . . . . 9 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
92913ad2antr1 1232 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9364, 92mpbid 223 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)))
94 wrd0 13548 . . . . . . . . . . . 12 ∅ ∈ Word (𝐶𝑉)
95 ffvelrn 6586 . . . . . . . . . . . 12 ((𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∅ ∈ Word (𝐶𝑉)) → (𝐹‘∅) ∈ Word (𝐶𝑉))
9663, 94, 95sylancl 576 . . . . . . . . . . 11 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) ∈ Word (𝐶𝑉))
97 lencl 13542 . . . . . . . . . . 11 ((𝐹‘∅) ∈ Word (𝐶𝑉) → (♯‘(𝐹‘∅)) ∈ ℕ0)
9896, 97syl 17 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) ∈ ℕ0)
9998nn0cnd 11626 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) ∈ ℂ)
100 0cnd 10325 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 0 ∈ ℂ)
10199addid1d 10528 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((♯‘(𝐹‘∅)) + 0) = (♯‘(𝐹‘∅)))
10294, 13syl5eleqr 2903 . . . . . . . . . . . 12 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∅ ∈ 𝑅)
103 fvoveq1 6904 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝐹‘(𝑥 ++ 𝑦)) = (𝐹‘(∅ ++ 𝑦)))
104 fveq2 6415 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
105104oveq1d 6896 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝐹𝑥) ++ (𝐹𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦)))
106103, 105eqeq12d 2832 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ (𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦))))
107 oveq2 6889 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (∅ ++ 𝑦) = (∅ ++ ∅))
108 ccatlid 13590 . . . . . . . . . . . . . . . . 17 (∅ ∈ Word (𝐶𝑉) → (∅ ++ ∅) = ∅)
10994, 108ax-mp 5 . . . . . . . . . . . . . . . 16 (∅ ++ ∅) = ∅
110107, 109syl6eq 2867 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∅ ++ 𝑦) = ∅)
111110fveq2d 6419 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐹‘(∅ ++ 𝑦)) = (𝐹‘∅))
112 fveq2 6415 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
113112oveq2d 6897 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((𝐹‘∅) ++ (𝐹𝑦)) = ((𝐹‘∅) ++ (𝐹‘∅)))
114111, 113eqeq12d 2832 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦)) ↔ (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅))))
115106, 114rspc2va 3527 . . . . . . . . . . . 12 (((∅ ∈ 𝑅 ∧ ∅ ∈ 𝑅) ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))
116102, 102, 64, 115syl21anc 857 . . . . . . . . . . 11 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))
117116fveq2d 6419 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) = (♯‘((𝐹‘∅) ++ (𝐹‘∅))))
118 ccatlen 13579 . . . . . . . . . . 11 (((𝐹‘∅) ∈ Word (𝐶𝑉) ∧ (𝐹‘∅) ∈ Word (𝐶𝑉)) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))))
11996, 96, 118syl2anc 575 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))))
120101, 117, 1193eqtrrd 2856 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))) = ((♯‘(𝐹‘∅)) + 0))
12199, 99, 100, 120addcanad 10533 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) = 0)
122 fvex 6428 . . . . . . . . 9 (𝐹‘∅) ∈ V
123 hasheq0 13379 . . . . . . . . 9 ((𝐹‘∅) ∈ V → ((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) = ∅))
124122, 123ax-mp 5 . . . . . . . 8 ((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) = ∅)
125121, 124sylib 209 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) = ∅)
12657, 57pm3.2i 458 . . . . . . . 8 ((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶𝑉)) ∈ Mnd)
12750frmd0 17609 . . . . . . . . 9 ∅ = (0g‘(freeMnd‘(𝐶𝑉)))
12874, 74, 75, 75, 127, 127ismhm 17549 . . . . . . . 8 (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ↔ (((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶𝑉)) ∈ Mnd) ∧ (𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ∧ (𝐹‘∅) = ∅)))
129126, 128mpbiran 691 . . . . . . 7 (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ↔ (𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ∧ (𝐹‘∅) = ∅))
13063, 93, 125, 129syl3anbrc 1436 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))))
131 eqid 2817 . . . . . . . . . 10 (varFMnd‘(𝐶𝑉)) = (varFMnd‘(𝐶𝑉))
132131vrmdf 17607 . . . . . . . . 9 ((𝐶𝑉) ∈ V → (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉))
13355, 132ax-mp 5 . . . . . . . 8 (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉)
134 fcompt 6630 . . . . . . . 8 ((𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉)) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))))
13563, 133, 134sylancl 576 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))))
136131vrmdval 17606 . . . . . . . . . 10 (((𝐶𝑉) ∈ V ∧ 𝑣 ∈ (𝐶𝑉)) → ((varFMnd‘(𝐶𝑉))‘𝑣) = ⟨“𝑣”⟩)
13759, 136sylan 571 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ((varFMnd‘(𝐶𝑉))‘𝑣) = ⟨“𝑣”⟩)
138137fveq2d 6419 . . . . . . . 8 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣)) = (𝐹‘⟨“𝑣”⟩))
139138mpteq2dva 4949 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
140135, 139eqtrd 2851 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
14150, 74, 131frmdup3lem 17615 . . . . . 6 ((((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (𝐶𝑉) ∈ V ∧ (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) ∧ (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ∧ (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))) → 𝐹 = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
14258, 59, 61, 130, 140, 141syl32anc 1490 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
14337, 52, 1423eqtr4rd 2862 . . . 4 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 = (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))))
1444, 2, 1mrsubff 31741 . . . . . . 7 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
145144ffnd 6264 . . . . . 6 (𝑇𝑊𝑆 Fn (𝑅pm 𝑉))
146145adantr 468 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝑆 Fn (𝑅pm 𝑉))
1472fvexi 6429 . . . . . . 7 𝑅 ∈ V
148 elpm2r 8117 . . . . . . 7 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉)) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
149147, 54, 148mpanl12 685 . . . . . 6 (((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
15048, 49, 149sylancl 576 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
151 fnfvelrn 6585 . . . . 5 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) ∈ ran 𝑆)
152146, 150, 151syl2anc 575 . . . 4 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) ∈ ran 𝑆)
153143, 152eqeltrd 2896 . . 3 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 ∈ ran 𝑆)
154153ex 399 . 2 (𝑇𝑊 → ((𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))) → 𝐹 ∈ ran 𝑆))
15511, 154impbid2 217 1 (𝑇𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wral 3107  Vcvv 3402  cdif 3777  cun 3778  wss 3780  c0 4127  ifcif 4290  cmpt 4934  ran crn 5323  ccom 5326   Fn wfn 6103  wf 6104  cfv 6108  (class class class)co 6881  𝑚 cmap 8099  pm cpm 8100  0cc0 10228   + caddc 10231  0cn0 11566  chash 13344  Word cword 13509   ++ cconcat 13511  ⟨“cs1 13512  Basecbs 16075  +gcplusg 16160   Σg cgsu 16313  Mndcmnd 17506   MndHom cmhm 17545  freeMndcfrmd 17596  varFMndcvrmd 17597  mCNcmcn 31689  mVRcmvar 31690  mRExcmrex 31695  mRSubstcmrsub 31699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-map 8101  df-pm 8102  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-card 9055  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-2 11371  df-n0 11567  df-xnn0 11637  df-z 11651  df-uz 11912  df-fz 12557  df-fzo 12697  df-seq 13032  df-hash 13345  df-word 13517  df-lsw 13518  df-concat 13519  df-s1 13520  df-substr 13521  df-struct 16077  df-ndx 16078  df-slot 16079  df-base 16081  df-sets 16082  df-ress 16083  df-plusg 16173  df-0g 16314  df-gsum 16315  df-mgm 17454  df-sgrp 17496  df-mnd 17507  df-mhm 17547  df-submnd 17548  df-frmd 17598  df-vrmd 17599  df-mrex 31715  df-mrsub 31719
This theorem is referenced by:  mrsubco  31750
  Copyright terms: Public domain W3C validator