Step | Hyp | Ref
| Expression |
1 | | mrsubccat.s |
. . . 4
⊢ 𝑆 = (mRSubst‘𝑇) |
2 | | mrsubccat.r |
. . . 4
⊢ 𝑅 = (mREx‘𝑇) |
3 | 1, 2 | mrsubf 33192 |
. . 3
⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) |
4 | | mrsubcn.v |
. . . . 5
⊢ 𝑉 = (mVR‘𝑇) |
5 | | mrsubcn.c |
. . . . 5
⊢ 𝐶 = (mCN‘𝑇) |
6 | 1, 2, 4, 5 | mrsubcn 33194 |
. . . 4
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑐 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
7 | 6 | ralrimiva 3105 |
. . 3
⊢ (𝐹 ∈ ran 𝑆 → ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
8 | 1, 2 | mrsubccat 33193 |
. . . . 5
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) |
9 | 8 | 3expb 1122 |
. . . 4
⊢ ((𝐹 ∈ ran 𝑆 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) |
10 | 9 | ralrimivva 3112 |
. . 3
⊢ (𝐹 ∈ ran 𝑆 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) |
11 | 3, 7, 10 | 3jca 1130 |
. 2
⊢ (𝐹 ∈ ran 𝑆 → (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) |
12 | 5, 4, 2 | mrexval 33176 |
. . . . . . 7
⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) |
13 | 12 | adantr 484 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝑅 = Word (𝐶 ∪ 𝑉)) |
14 | | s1eq 14157 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → 〈“𝑤”〉 = 〈“𝑣”〉) |
15 | 14 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝐹‘〈“𝑤”〉) = (𝐹‘〈“𝑣”〉)) |
16 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) = (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) |
17 | | fvex 6730 |
. . . . . . . . . . . 12
⊢ (𝐹‘〈“𝑣”〉) ∈
V |
18 | 15, 16, 17 | fvmpt 6818 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝑉 → ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣) = (𝐹‘〈“𝑣”〉)) |
19 | 18 | adantl 485 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣) = (𝐹‘〈“𝑣”〉)) |
20 | | difun2 4395 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∪ 𝑉) ∖ 𝑉) = (𝐶 ∖ 𝑉) |
21 | 20 | eleq2i 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ((𝐶 ∪ 𝑉) ∖ 𝑉) ↔ 𝑣 ∈ (𝐶 ∖ 𝑉)) |
22 | | eldif 3876 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ((𝐶 ∪ 𝑉) ∖ 𝑉) ↔ (𝑣 ∈ (𝐶 ∪ 𝑉) ∧ ¬ 𝑣 ∈ 𝑉)) |
23 | 21, 22 | bitr3i 280 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (𝐶 ∖ 𝑉) ↔ (𝑣 ∈ (𝐶 ∪ 𝑉) ∧ ¬ 𝑣 ∈ 𝑉)) |
24 | | simpr2 1197 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
25 | | s1eq 14157 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑣 → 〈“𝑐”〉 = 〈“𝑣”〉) |
26 | 25 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑣 → (𝐹‘〈“𝑐”〉) = (𝐹‘〈“𝑣”〉)) |
27 | 26, 25 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑣 → ((𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ↔ (𝐹‘〈“𝑣”〉) =
〈“𝑣”〉)) |
28 | 27 | rspccva 3536 |
. . . . . . . . . . . . . 14
⊢
((∀𝑐 ∈
(𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧ 𝑣 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑣”〉) = 〈“𝑣”〉) |
29 | 24, 28 | sylan 583 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑣”〉) = 〈“𝑣”〉) |
30 | 23, 29 | sylan2br 598 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ (𝑣 ∈ (𝐶 ∪ 𝑉) ∧ ¬ 𝑣 ∈ 𝑉)) → (𝐹‘〈“𝑣”〉) = 〈“𝑣”〉) |
31 | 30 | anassrs 471 |
. . . . . . . . . . 11
⊢ ((((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ ¬ 𝑣 ∈ 𝑉) → (𝐹‘〈“𝑣”〉) = 〈“𝑣”〉) |
32 | 31 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ ¬ 𝑣 ∈ 𝑉) → 〈“𝑣”〉 = (𝐹‘〈“𝑣”〉)) |
33 | 19, 32 | ifeqda 4475 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉) = (𝐹‘〈“𝑣”〉)) |
34 | 33 | mpteq2dva 5150 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉)) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉))) |
35 | 34 | coeq1d 5730 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉)) ∘ 𝑟) = ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)) ∘ 𝑟)) |
36 | 35 | oveq2d 7229 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉)) ∘ 𝑟)) = ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)) ∘ 𝑟))) |
37 | 13, 36 | mpteq12dv 5140 |
. . . . 5
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑟 ∈ 𝑅 ↦ ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉)) ∘ 𝑟))) = (𝑟 ∈ Word (𝐶 ∪ 𝑉) ↦ ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)) ∘ 𝑟)))) |
38 | | elun2 4091 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ (𝐶 ∪ 𝑉)) |
39 | | simplr1 1217 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → 𝐹:𝑅⟶𝑅) |
40 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → 𝑣 ∈ (𝐶 ∪ 𝑉)) |
41 | 40 | s1cld 14160 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → 〈“𝑣”〉 ∈ Word (𝐶 ∪ 𝑉)) |
42 | 12 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → 𝑅 = Word (𝐶 ∪ 𝑉)) |
43 | 41, 42 | eleqtrrd 2841 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → 〈“𝑣”〉 ∈ 𝑅) |
44 | 39, 43 | ffvelrnd 6905 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → (𝐹‘〈“𝑣”〉) ∈ 𝑅) |
45 | 38, 44 | sylan2 596 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ 𝑉) → (𝐹‘〈“𝑣”〉) ∈ 𝑅) |
46 | 15 | cbvmptv 5158 |
. . . . . . 7
⊢ (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) = (𝑣 ∈ 𝑉 ↦ (𝐹‘〈“𝑣”〉)) |
47 | 45, 46 | fmptd 6931 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)):𝑉⟶𝑅) |
48 | | ssid 3923 |
. . . . . 6
⊢ 𝑉 ⊆ 𝑉 |
49 | | eqid 2737 |
. . . . . . 7
⊢
(freeMnd‘(𝐶
∪ 𝑉)) =
(freeMnd‘(𝐶 ∪
𝑉)) |
50 | 5, 4, 2, 1, 49 | mrsubfval 33183 |
. . . . . 6
⊢ (((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)):𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉) → (𝑆‘(𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))) = (𝑟 ∈ 𝑅 ↦ ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉)) ∘ 𝑟)))) |
51 | 47, 48, 50 | sylancl 589 |
. . . . 5
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑆‘(𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))) = (𝑟 ∈ 𝑅 ↦ ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝑉, ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))‘𝑣), 〈“𝑣”〉)) ∘ 𝑟)))) |
52 | 5 | fvexi 6731 |
. . . . . . . . 9
⊢ 𝐶 ∈ V |
53 | 4 | fvexi 6731 |
. . . . . . . . 9
⊢ 𝑉 ∈ V |
54 | 52, 53 | unex 7531 |
. . . . . . . 8
⊢ (𝐶 ∪ 𝑉) ∈ V |
55 | 49 | frmdmnd 18286 |
. . . . . . . 8
⊢ ((𝐶 ∪ 𝑉) ∈ V → (freeMnd‘(𝐶 ∪ 𝑉)) ∈ Mnd) |
56 | 54, 55 | ax-mp 5 |
. . . . . . 7
⊢
(freeMnd‘(𝐶
∪ 𝑉)) ∈
Mnd |
57 | 56 | a1i 11 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (freeMnd‘(𝐶 ∪ 𝑉)) ∈ Mnd) |
58 | 54 | a1i 11 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐶 ∪ 𝑉) ∈ V) |
59 | 44, 42 | eleqtrd 2840 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → (𝐹‘〈“𝑣”〉) ∈ Word (𝐶 ∪ 𝑉)) |
60 | 59 | fmpttd 6932 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) |
61 | | simpr1 1196 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝐹:𝑅⟶𝑅) |
62 | 13, 13 | feq23d 6540 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐹:𝑅⟶𝑅 ↔ 𝐹:Word (𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉))) |
63 | 61, 62 | mpbid 235 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝐹:Word (𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) |
64 | | simpr3 1198 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) |
65 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
66 | 12 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) → 𝑅 = Word (𝐶 ∪ 𝑉)) |
67 | 66 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑅 = Word (𝐶 ∪ 𝑉)) |
68 | 65, 67 | eleqtrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ Word (𝐶 ∪ 𝑉)) |
69 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
70 | 69, 67 | eleqtrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ Word (𝐶 ∪ 𝑉)) |
71 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(freeMnd‘(𝐶 ∪ 𝑉))) = (Base‘(freeMnd‘(𝐶 ∪ 𝑉))) |
72 | 49, 71 | frmdbas 18279 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∪ 𝑉) ∈ V →
(Base‘(freeMnd‘(𝐶 ∪ 𝑉))) = Word (𝐶 ∪ 𝑉)) |
73 | 54, 72 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘(freeMnd‘(𝐶 ∪ 𝑉))) = Word (𝐶 ∪ 𝑉) |
74 | 73 | eqcomi 2746 |
. . . . . . . . . . . . . . 15
⊢ Word
(𝐶 ∪ 𝑉) = (Base‘(freeMnd‘(𝐶 ∪ 𝑉))) |
75 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(+g‘(freeMnd‘(𝐶 ∪ 𝑉))) =
(+g‘(freeMnd‘(𝐶 ∪ 𝑉))) |
76 | 49, 74, 75 | frmdadd 18282 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Word (𝐶 ∪ 𝑉) ∧ 𝑦 ∈ Word (𝐶 ∪ 𝑉)) → (𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦) = (𝑥 ++ 𝑦)) |
77 | 68, 70, 76 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦) = (𝑥 ++ 𝑦)) |
78 | 77 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = (𝐹‘(𝑥 ++ 𝑦))) |
79 | | ffvelrn 6902 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑅⟶𝑅 ∧ 𝑥 ∈ 𝑅) → (𝐹‘𝑥) ∈ 𝑅) |
80 | 79 | ad2ant2lr 748 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝐹‘𝑥) ∈ 𝑅) |
81 | 80, 67 | eleqtrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝐹‘𝑥) ∈ Word (𝐶 ∪ 𝑉)) |
82 | | ffvelrn 6902 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑅⟶𝑅 ∧ 𝑦 ∈ 𝑅) → (𝐹‘𝑦) ∈ 𝑅) |
83 | 82 | ad2ant2l 746 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝐹‘𝑦) ∈ 𝑅) |
84 | 83, 67 | eleqtrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝐹‘𝑦) ∈ Word (𝐶 ∪ 𝑉)) |
85 | 49, 74, 75 | frmdadd 18282 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ Word (𝐶 ∪ 𝑉) ∧ (𝐹‘𝑦) ∈ Word (𝐶 ∪ 𝑉)) → ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) |
86 | 81, 84, 85 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) |
87 | 78, 86 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) ↔ (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) |
88 | 87 | 2ralbidva 3119 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) |
89 | 66 | raleqdv 3325 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) → (∀𝑦 ∈ 𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) ↔ ∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)))) |
90 | 66, 89 | raleqbidv 3313 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) ↔ ∀𝑥 ∈ Word (𝐶 ∪ 𝑉)∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)))) |
91 | 88, 90 | bitr3d 284 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐹:𝑅⟶𝑅) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)) ↔ ∀𝑥 ∈ Word (𝐶 ∪ 𝑉)∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)))) |
92 | 91 | 3ad2antr1 1190 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)) ↔ ∀𝑥 ∈ Word (𝐶 ∪ 𝑉)∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)))) |
93 | 64, 92 | mpbid 235 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ∀𝑥 ∈ Word (𝐶 ∪ 𝑉)∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦))) |
94 | | wrd0 14094 |
. . . . . . . . . . . 12
⊢ ∅
∈ Word (𝐶 ∪ 𝑉) |
95 | | ffvelrn 6902 |
. . . . . . . . . . . 12
⊢ ((𝐹:Word (𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉) ∧ ∅ ∈ Word (𝐶 ∪ 𝑉)) → (𝐹‘∅) ∈ Word (𝐶 ∪ 𝑉)) |
96 | 63, 94, 95 | sylancl 589 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐹‘∅) ∈ Word (𝐶 ∪ 𝑉)) |
97 | | lencl 14088 |
. . . . . . . . . . 11
⊢ ((𝐹‘∅) ∈ Word
(𝐶 ∪ 𝑉) → (♯‘(𝐹‘∅)) ∈
ℕ0) |
98 | 96, 97 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (♯‘(𝐹‘∅)) ∈
ℕ0) |
99 | 98 | nn0cnd 12152 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (♯‘(𝐹‘∅)) ∈
ℂ) |
100 | | 0cnd 10826 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 0 ∈
ℂ) |
101 | 99 | addid1d 11032 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ((♯‘(𝐹‘∅)) + 0) =
(♯‘(𝐹‘∅))) |
102 | 94, 13 | eleqtrrid 2845 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ∅ ∈ 𝑅) |
103 | | fvoveq1 7236 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∅ → (𝐹‘(𝑥 ++ 𝑦)) = (𝐹‘(∅ ++ 𝑦))) |
104 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → (𝐹‘𝑥) = (𝐹‘∅)) |
105 | 104 | oveq1d 7228 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∅ → ((𝐹‘𝑥) ++ (𝐹‘𝑦)) = ((𝐹‘∅) ++ (𝐹‘𝑦))) |
106 | 103, 105 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → ((𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)) ↔ (𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹‘𝑦)))) |
107 | | oveq2 7221 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ∅ → (∅ ++
𝑦) = (∅ ++
∅)) |
108 | | ccatidid 14147 |
. . . . . . . . . . . . . . . 16
⊢ (∅
++ ∅) = ∅ |
109 | 107, 108 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ∅ → (∅ ++
𝑦) =
∅) |
110 | 109 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → (𝐹‘(∅ ++ 𝑦)) = (𝐹‘∅)) |
111 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) |
112 | 111 | oveq2d 7229 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ∅ → ((𝐹‘∅) ++ (𝐹‘𝑦)) = ((𝐹‘∅) ++ (𝐹‘∅))) |
113 | 110, 112 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ∅ → ((𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹‘𝑦)) ↔ (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))) |
114 | 106, 113 | rspc2va 3548 |
. . . . . . . . . . . 12
⊢
(((∅ ∈ 𝑅
∧ ∅ ∈ 𝑅)
∧ ∀𝑥 ∈
𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅))) |
115 | 102, 102,
64, 114 | syl21anc 838 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅))) |
116 | 115 | fveq2d 6721 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (♯‘(𝐹‘∅)) = (♯‘((𝐹‘∅) ++ (𝐹‘∅)))) |
117 | | ccatlen 14130 |
. . . . . . . . . . 11
⊢ (((𝐹‘∅) ∈ Word
(𝐶 ∪ 𝑉) ∧ (𝐹‘∅) ∈ Word (𝐶 ∪ 𝑉)) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) +
(♯‘(𝐹‘∅)))) |
118 | 96, 96, 117 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) =
((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅)))) |
119 | 101, 116,
118 | 3eqtrrd 2782 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → ((♯‘(𝐹‘∅)) +
(♯‘(𝐹‘∅))) = ((♯‘(𝐹‘∅)) +
0)) |
120 | 99, 99, 100, 119 | addcanad 11037 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (♯‘(𝐹‘∅)) = 0) |
121 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝐹‘∅) ∈
V |
122 | | hasheq0 13930 |
. . . . . . . . 9
⊢ ((𝐹‘∅) ∈ V →
((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) =
∅)) |
123 | 121, 122 | ax-mp 5 |
. . . . . . . 8
⊢
((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) =
∅) |
124 | 120, 123 | sylib 221 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐹‘∅) = ∅) |
125 | 56, 56 | pm3.2i 474 |
. . . . . . . 8
⊢
((freeMnd‘(𝐶
∪ 𝑉)) ∈ Mnd ∧
(freeMnd‘(𝐶 ∪
𝑉)) ∈
Mnd) |
126 | 49 | frmd0 18287 |
. . . . . . . . 9
⊢ ∅ =
(0g‘(freeMnd‘(𝐶 ∪ 𝑉))) |
127 | 74, 74, 75, 75, 126, 126 | ismhm 18220 |
. . . . . . . 8
⊢ (𝐹 ∈ ((freeMnd‘(𝐶 ∪ 𝑉)) MndHom (freeMnd‘(𝐶 ∪ 𝑉))) ↔ (((freeMnd‘(𝐶 ∪ 𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶 ∪ 𝑉)) ∈ Mnd) ∧ (𝐹:Word (𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉) ∧ ∀𝑥 ∈ Word (𝐶 ∪ 𝑉)∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) ∧ (𝐹‘∅) =
∅))) |
128 | 125, 127 | mpbiran 709 |
. . . . . . 7
⊢ (𝐹 ∈ ((freeMnd‘(𝐶 ∪ 𝑉)) MndHom (freeMnd‘(𝐶 ∪ 𝑉))) ↔ (𝐹:Word (𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉) ∧ ∀𝑥 ∈ Word (𝐶 ∪ 𝑉)∀𝑦 ∈ Word (𝐶 ∪ 𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))𝑦)) = ((𝐹‘𝑥)(+g‘(freeMnd‘(𝐶 ∪ 𝑉)))(𝐹‘𝑦)) ∧ (𝐹‘∅) = ∅)) |
129 | 63, 93, 124, 128 | syl3anbrc 1345 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝐹 ∈ ((freeMnd‘(𝐶 ∪ 𝑉)) MndHom (freeMnd‘(𝐶 ∪ 𝑉)))) |
130 | | eqid 2737 |
. . . . . . . . . 10
⊢
(varFMnd‘(𝐶 ∪ 𝑉)) = (varFMnd‘(𝐶 ∪ 𝑉)) |
131 | 130 | vrmdf 18285 |
. . . . . . . . 9
⊢ ((𝐶 ∪ 𝑉) ∈ V →
(varFMnd‘(𝐶 ∪ 𝑉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) |
132 | 54, 131 | ax-mp 5 |
. . . . . . . 8
⊢
(varFMnd‘(𝐶 ∪ 𝑉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉) |
133 | | fcompt 6948 |
. . . . . . . 8
⊢ ((𝐹:Word (𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉) ∧
(varFMnd‘(𝐶 ∪ 𝑉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) → (𝐹 ∘
(varFMnd‘(𝐶 ∪ 𝑉))) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘((varFMnd‘(𝐶 ∪ 𝑉))‘𝑣)))) |
134 | 63, 132, 133 | sylancl 589 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐹 ∘
(varFMnd‘(𝐶 ∪ 𝑉))) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘((varFMnd‘(𝐶 ∪ 𝑉))‘𝑣)))) |
135 | 130 | vrmdval 18284 |
. . . . . . . . . 10
⊢ (((𝐶 ∪ 𝑉) ∈ V ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) →
((varFMnd‘(𝐶 ∪ 𝑉))‘𝑣) = 〈“𝑣”〉) |
136 | 54, 135 | mpan 690 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝐶 ∪ 𝑉) →
((varFMnd‘(𝐶 ∪ 𝑉))‘𝑣) = 〈“𝑣”〉) |
137 | 136 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝐶 ∪ 𝑉) → (𝐹‘((varFMnd‘(𝐶 ∪ 𝑉))‘𝑣)) = (𝐹‘〈“𝑣”〉)) |
138 | 137 | mpteq2ia 5146 |
. . . . . . 7
⊢ (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘((varFMnd‘(𝐶 ∪ 𝑉))‘𝑣))) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)) |
139 | 134, 138 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝐹 ∘
(varFMnd‘(𝐶 ∪ 𝑉))) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉))) |
140 | 49, 74, 130 | frmdup3lem 18293 |
. . . . . 6
⊢
((((freeMnd‘(𝐶
∪ 𝑉)) ∈ Mnd ∧
(𝐶 ∪ 𝑉) ∈ V ∧ (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) ∧ (𝐹 ∈ ((freeMnd‘(𝐶 ∪ 𝑉)) MndHom (freeMnd‘(𝐶 ∪ 𝑉))) ∧ (𝐹 ∘
(varFMnd‘(𝐶 ∪ 𝑉))) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)))) → 𝐹 = (𝑟 ∈ Word (𝐶 ∪ 𝑉) ↦ ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)) ∘ 𝑟)))) |
141 | 57, 58, 60, 129, 139, 140 | syl32anc 1380 |
. . . . 5
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝐹 = (𝑟 ∈ Word (𝐶 ∪ 𝑉) ↦ ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ (𝐹‘〈“𝑣”〉)) ∘ 𝑟)))) |
142 | 37, 51, 141 | 3eqtr4rd 2788 |
. . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝐹 = (𝑆‘(𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)))) |
143 | 4, 2, 1 | mrsubff 33187 |
. . . . . . 7
⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
144 | 143 | ffnd 6546 |
. . . . . 6
⊢ (𝑇 ∈ 𝑊 → 𝑆 Fn (𝑅 ↑pm 𝑉)) |
145 | 144 | adantr 484 |
. . . . 5
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝑆 Fn (𝑅 ↑pm 𝑉)) |
146 | 2 | fvexi 6731 |
. . . . . . 7
⊢ 𝑅 ∈ V |
147 | | elpm2r 8526 |
. . . . . . 7
⊢ (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ ((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)):𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉)) → (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) ∈ (𝑅 ↑pm 𝑉)) |
148 | 146, 53, 147 | mpanl12 702 |
. . . . . 6
⊢ (((𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)):𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉) → (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) ∈ (𝑅 ↑pm 𝑉)) |
149 | 47, 48, 148 | sylancl 589 |
. . . . 5
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) ∈ (𝑅 ↑pm 𝑉)) |
150 | | fnfvelrn 6901 |
. . . . 5
⊢ ((𝑆 Fn (𝑅 ↑pm 𝑉) ∧ (𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉)) ∈ (𝑅 ↑pm 𝑉)) → (𝑆‘(𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))) ∈ ran 𝑆) |
151 | 145, 149,
150 | syl2anc 587 |
. . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → (𝑆‘(𝑤 ∈ 𝑉 ↦ (𝐹‘〈“𝑤”〉))) ∈ ran 𝑆) |
152 | 142, 151 | eqeltrd 2838 |
. . 3
⊢ ((𝑇 ∈ 𝑊 ∧ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦)))) → 𝐹 ∈ ran 𝑆) |
153 | 152 | ex 416 |
. 2
⊢ (𝑇 ∈ 𝑊 → ((𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))) → 𝐹 ∈ ran 𝑆)) |
154 | 11, 153 | impbid2 229 |
1
⊢ (𝑇 ∈ 𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))))) |