Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmrsubrn Structured version   Visualization version   GIF version

Theorem elmrsubrn 33382
Description: Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 33411.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
mrsubcn.v 𝑉 = (mVR‘𝑇)
mrsubcn.c 𝐶 = (mCN‘𝑇)
Assertion
Ref Expression
elmrsubrn (𝑇𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑐,𝑦,𝐶   𝑥,𝑅,𝑦   𝑆,𝑐,𝑥,𝑦   𝑥,𝑇,𝑦   𝐹,𝑐,𝑥,𝑦   𝑉,𝑐,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑅(𝑐)   𝑇(𝑐)   𝑊(𝑐)

Proof of Theorem elmrsubrn
Dummy variables 𝑟 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubccat.s . . . 4 𝑆 = (mRSubst‘𝑇)
2 mrsubccat.r . . . 4 𝑅 = (mREx‘𝑇)
31, 2mrsubf 33379 . . 3 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
4 mrsubcn.v . . . . 5 𝑉 = (mVR‘𝑇)
5 mrsubcn.c . . . . 5 𝐶 = (mCN‘𝑇)
61, 2, 4, 5mrsubcn 33381 . . . 4 ((𝐹 ∈ ran 𝑆𝑐 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
76ralrimiva 3107 . . 3 (𝐹 ∈ ran 𝑆 → ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
81, 2mrsubccat 33380 . . . . 5 ((𝐹 ∈ ran 𝑆𝑥𝑅𝑦𝑅) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
983expb 1118 . . . 4 ((𝐹 ∈ ran 𝑆 ∧ (𝑥𝑅𝑦𝑅)) → (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
109ralrimivva 3114 . . 3 (𝐹 ∈ ran 𝑆 → ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
113, 7, 103jca 1126 . 2 (𝐹 ∈ ran 𝑆 → (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
125, 4, 2mrexval 33363 . . . . . . 7 (𝑇𝑊𝑅 = Word (𝐶𝑉))
1312adantr 480 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝑅 = Word (𝐶𝑉))
14 s1eq 14233 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → ⟨“𝑤”⟩ = ⟨“𝑣”⟩)
1514fveq2d 6760 . . . . . . . . . . . 12 (𝑤 = 𝑣 → (𝐹‘⟨“𝑤”⟩) = (𝐹‘⟨“𝑣”⟩))
16 eqid 2738 . . . . . . . . . . . 12 (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) = (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))
17 fvex 6769 . . . . . . . . . . . 12 (𝐹‘⟨“𝑣”⟩) ∈ V
1815, 16, 17fvmpt 6857 . . . . . . . . . . 11 (𝑣𝑉 → ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣) = (𝐹‘⟨“𝑣”⟩))
1918adantl 481 . . . . . . . . . 10 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝑉) → ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣) = (𝐹‘⟨“𝑣”⟩))
20 difun2 4411 . . . . . . . . . . . . . . 15 ((𝐶𝑉) ∖ 𝑉) = (𝐶𝑉)
2120eleq2i 2830 . . . . . . . . . . . . . 14 (𝑣 ∈ ((𝐶𝑉) ∖ 𝑉) ↔ 𝑣 ∈ (𝐶𝑉))
22 eldif 3893 . . . . . . . . . . . . . 14 (𝑣 ∈ ((𝐶𝑉) ∖ 𝑉) ↔ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉))
2321, 22bitr3i 276 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐶𝑉) ↔ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉))
24 simpr2 1193 . . . . . . . . . . . . . 14 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
25 s1eq 14233 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑣 → ⟨“𝑐”⟩ = ⟨“𝑣”⟩)
2625fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑣 → (𝐹‘⟨“𝑐”⟩) = (𝐹‘⟨“𝑣”⟩))
2726, 25eqeq12d 2754 . . . . . . . . . . . . . . 15 (𝑐 = 𝑣 → ((𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ↔ (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩))
2827rspccva 3551 . . . . . . . . . . . . . 14 ((∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
2924, 28sylan 579 . . . . . . . . . . . . 13 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3023, 29sylan2br 594 . . . . . . . . . . . 12 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ (𝑣 ∈ (𝐶𝑉) ∧ ¬ 𝑣𝑉)) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3130anassrs 467 . . . . . . . . . . 11 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝑉) → (𝐹‘⟨“𝑣”⟩) = ⟨“𝑣”⟩)
3231eqcomd 2744 . . . . . . . . . 10 ((((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝑉) → ⟨“𝑣”⟩ = (𝐹‘⟨“𝑣”⟩))
3319, 32ifeqda 4492 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩) = (𝐹‘⟨“𝑣”⟩))
3433mpteq2dva 5170 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
3534coeq1d 5759 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟) = ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))
3635oveq2d 7271 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟)) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟)))
3713, 36mpteq12dv 5161 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))) = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
38 elun2 4107 . . . . . . . 8 (𝑣𝑉𝑣 ∈ (𝐶𝑉))
39 simplr1 1213 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝑅𝑅)
40 simpr 484 . . . . . . . . . . 11 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝑣 ∈ (𝐶𝑉))
4140s1cld 14236 . . . . . . . . . 10 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
4212ad2antrr 722 . . . . . . . . . 10 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
4341, 42eleqtrrd 2842 . . . . . . . . 9 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → ⟨“𝑣”⟩ ∈ 𝑅)
4439, 43ffvelrnd 6944 . . . . . . . 8 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) ∈ 𝑅)
4538, 44sylan2 592 . . . . . . 7 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣𝑉) → (𝐹‘⟨“𝑣”⟩) ∈ 𝑅)
4615cbvmptv 5183 . . . . . . 7 (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) = (𝑣𝑉 ↦ (𝐹‘⟨“𝑣”⟩))
4745, 46fmptd 6970 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅)
48 ssid 3939 . . . . . 6 𝑉𝑉
49 eqid 2738 . . . . . . 7 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
505, 4, 2, 1, 49mrsubfval 33370 . . . . . 6 (((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) = (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))))
5147, 48, 50sylancl 585 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) = (𝑟𝑅 ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝑉, ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑟))))
525fvexi 6770 . . . . . . . . 9 𝐶 ∈ V
534fvexi 6770 . . . . . . . . 9 𝑉 ∈ V
5452, 53unex 7574 . . . . . . . 8 (𝐶𝑉) ∈ V
5549frmdmnd 18413 . . . . . . . 8 ((𝐶𝑉) ∈ V → (freeMnd‘(𝐶𝑉)) ∈ Mnd)
5654, 55ax-mp 5 . . . . . . 7 (freeMnd‘(𝐶𝑉)) ∈ Mnd
5756a1i 11 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (freeMnd‘(𝐶𝑉)) ∈ Mnd)
5854a1i 11 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐶𝑉) ∈ V)
5944, 42eleqtrd 2841 . . . . . . 7 (((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) ∧ 𝑣 ∈ (𝐶𝑉)) → (𝐹‘⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
6059fmpttd 6971 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
61 simpr1 1192 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹:𝑅𝑅)
6213, 13feq23d 6579 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹:𝑅𝑅𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉)))
6361, 62mpbid 231 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉))
64 simpr3 1194 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
65 simprl 767 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
6612adantr 480 . . . . . . . . . . . . . . . 16 ((𝑇𝑊𝐹:𝑅𝑅) → 𝑅 = Word (𝐶𝑉))
6766adantr 480 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑅 = Word (𝐶𝑉))
6865, 67eleqtrd 2841 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥 ∈ Word (𝐶𝑉))
69 simprr 769 . . . . . . . . . . . . . . 15 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
7069, 67eleqtrd 2841 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦 ∈ Word (𝐶𝑉))
71 eqid 2738 . . . . . . . . . . . . . . . . . 18 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
7249, 71frmdbas 18406 . . . . . . . . . . . . . . . . 17 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
7354, 72ax-mp 5 . . . . . . . . . . . . . . . 16 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
7473eqcomi 2747 . . . . . . . . . . . . . . 15 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
75 eqid 2738 . . . . . . . . . . . . . . 15 (+g‘(freeMnd‘(𝐶𝑉))) = (+g‘(freeMnd‘(𝐶𝑉)))
7649, 74, 75frmdadd 18409 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (𝐶𝑉) ∧ 𝑦 ∈ Word (𝐶𝑉)) → (𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦) = (𝑥 ++ 𝑦))
7768, 70, 76syl2anc 583 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦) = (𝑥 ++ 𝑦))
7877fveq2d 6760 . . . . . . . . . . . 12 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = (𝐹‘(𝑥 ++ 𝑦)))
79 ffvelrn 6941 . . . . . . . . . . . . . . 15 ((𝐹:𝑅𝑅𝑥𝑅) → (𝐹𝑥) ∈ 𝑅)
8079ad2ant2lr 744 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑥) ∈ 𝑅)
8180, 67eleqtrd 2841 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑥) ∈ Word (𝐶𝑉))
82 ffvelrn 6941 . . . . . . . . . . . . . . 15 ((𝐹:𝑅𝑅𝑦𝑅) → (𝐹𝑦) ∈ 𝑅)
8382ad2ant2l 742 . . . . . . . . . . . . . 14 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑦) ∈ 𝑅)
8483, 67eleqtrd 2841 . . . . . . . . . . . . 13 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹𝑦) ∈ Word (𝐶𝑉))
8549, 74, 75frmdadd 18409 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ Word (𝐶𝑉) ∧ (𝐹𝑦) ∈ Word (𝐶𝑉)) → ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
8681, 84, 85syl2anc 583 . . . . . . . . . . . 12 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))
8778, 86eqeq12d 2754 . . . . . . . . . . 11 (((𝑇𝑊𝐹:𝑅𝑅) ∧ (𝑥𝑅𝑦𝑅)) → ((𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
88872ralbidva 3121 . . . . . . . . . 10 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))))
8966raleqdv 3339 . . . . . . . . . . 11 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9066, 89raleqbidv 3327 . . . . . . . . . 10 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9188, 90bitr3d 280 . . . . . . . . 9 ((𝑇𝑊𝐹:𝑅𝑅) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
92913ad2antr1 1186 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦))))
9364, 92mpbid 231 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)))
94 wrd0 14170 . . . . . . . . . . . 12 ∅ ∈ Word (𝐶𝑉)
95 ffvelrn 6941 . . . . . . . . . . . 12 ((𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∅ ∈ Word (𝐶𝑉)) → (𝐹‘∅) ∈ Word (𝐶𝑉))
9663, 94, 95sylancl 585 . . . . . . . . . . 11 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) ∈ Word (𝐶𝑉))
97 lencl 14164 . . . . . . . . . . 11 ((𝐹‘∅) ∈ Word (𝐶𝑉) → (♯‘(𝐹‘∅)) ∈ ℕ0)
9896, 97syl 17 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) ∈ ℕ0)
9998nn0cnd 12225 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) ∈ ℂ)
100 0cnd 10899 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 0 ∈ ℂ)
10199addid1d 11105 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((♯‘(𝐹‘∅)) + 0) = (♯‘(𝐹‘∅)))
10294, 13eleqtrrid 2846 . . . . . . . . . . . 12 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ∅ ∈ 𝑅)
103 fvoveq1 7278 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝐹‘(𝑥 ++ 𝑦)) = (𝐹‘(∅ ++ 𝑦)))
104 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
105104oveq1d 7270 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝐹𝑥) ++ (𝐹𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦)))
106103, 105eqeq12d 2754 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)) ↔ (𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦))))
107 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (∅ ++ 𝑦) = (∅ ++ ∅))
108 ccatidid 14223 . . . . . . . . . . . . . . . 16 (∅ ++ ∅) = ∅
109107, 108eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∅ ++ 𝑦) = ∅)
110109fveq2d 6760 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐹‘(∅ ++ 𝑦)) = (𝐹‘∅))
111 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
112111oveq2d 7271 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((𝐹‘∅) ++ (𝐹𝑦)) = ((𝐹‘∅) ++ (𝐹‘∅)))
113110, 112eqeq12d 2754 . . . . . . . . . . . . 13 (𝑦 = ∅ → ((𝐹‘(∅ ++ 𝑦)) = ((𝐹‘∅) ++ (𝐹𝑦)) ↔ (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅))))
114106, 113rspc2va 3563 . . . . . . . . . . . 12 (((∅ ∈ 𝑅 ∧ ∅ ∈ 𝑅) ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))
115102, 102, 64, 114syl21anc 834 . . . . . . . . . . 11 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) = ((𝐹‘∅) ++ (𝐹‘∅)))
116115fveq2d 6760 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) = (♯‘((𝐹‘∅) ++ (𝐹‘∅))))
117 ccatlen 14206 . . . . . . . . . . 11 (((𝐹‘∅) ∈ Word (𝐶𝑉) ∧ (𝐹‘∅) ∈ Word (𝐶𝑉)) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))))
11896, 96, 117syl2anc 583 . . . . . . . . . 10 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘((𝐹‘∅) ++ (𝐹‘∅))) = ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))))
119101, 116, 1183eqtrrd 2783 . . . . . . . . 9 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → ((♯‘(𝐹‘∅)) + (♯‘(𝐹‘∅))) = ((♯‘(𝐹‘∅)) + 0))
12099, 99, 100, 119addcanad 11110 . . . . . . . 8 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (♯‘(𝐹‘∅)) = 0)
121 fvex 6769 . . . . . . . . 9 (𝐹‘∅) ∈ V
122 hasheq0 14006 . . . . . . . . 9 ((𝐹‘∅) ∈ V → ((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) = ∅))
123121, 122ax-mp 5 . . . . . . . 8 ((♯‘(𝐹‘∅)) = 0 ↔ (𝐹‘∅) = ∅)
124120, 123sylib 217 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹‘∅) = ∅)
12556, 56pm3.2i 470 . . . . . . . 8 ((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶𝑉)) ∈ Mnd)
12649frmd0 18414 . . . . . . . . 9 ∅ = (0g‘(freeMnd‘(𝐶𝑉)))
12774, 74, 75, 75, 126, 126ismhm 18347 . . . . . . . 8 (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ↔ (((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (freeMnd‘(𝐶𝑉)) ∈ Mnd) ∧ (𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ∧ (𝐹‘∅) = ∅)))
128125, 127mpbiran 705 . . . . . . 7 (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ↔ (𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ ∀𝑥 ∈ Word (𝐶𝑉)∀𝑦 ∈ Word (𝐶𝑉)(𝐹‘(𝑥(+g‘(freeMnd‘(𝐶𝑉)))𝑦)) = ((𝐹𝑥)(+g‘(freeMnd‘(𝐶𝑉)))(𝐹𝑦)) ∧ (𝐹‘∅) = ∅))
12963, 93, 124, 128syl3anbrc 1341 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))))
130 eqid 2738 . . . . . . . . . 10 (varFMnd‘(𝐶𝑉)) = (varFMnd‘(𝐶𝑉))
131130vrmdf 18412 . . . . . . . . 9 ((𝐶𝑉) ∈ V → (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉))
13254, 131ax-mp 5 . . . . . . . 8 (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉)
133 fcompt 6987 . . . . . . . 8 ((𝐹:Word (𝐶𝑉)⟶Word (𝐶𝑉) ∧ (varFMnd‘(𝐶𝑉)):(𝐶𝑉)⟶Word (𝐶𝑉)) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))))
13463, 132, 133sylancl 585 . . . . . . 7 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))))
135130vrmdval 18411 . . . . . . . . . 10 (((𝐶𝑉) ∈ V ∧ 𝑣 ∈ (𝐶𝑉)) → ((varFMnd‘(𝐶𝑉))‘𝑣) = ⟨“𝑣”⟩)
13654, 135mpan 686 . . . . . . . . 9 (𝑣 ∈ (𝐶𝑉) → ((varFMnd‘(𝐶𝑉))‘𝑣) = ⟨“𝑣”⟩)
137136fveq2d 6760 . . . . . . . 8 (𝑣 ∈ (𝐶𝑉) → (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣)) = (𝐹‘⟨“𝑣”⟩))
138137mpteq2ia 5173 . . . . . . 7 (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘((varFMnd‘(𝐶𝑉))‘𝑣))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩))
139134, 138eqtrdi 2795 . . . . . 6 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))
14049, 74, 130frmdup3lem 18420 . . . . . 6 ((((freeMnd‘(𝐶𝑉)) ∈ Mnd ∧ (𝐶𝑉) ∈ V ∧ (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) ∧ (𝐹 ∈ ((freeMnd‘(𝐶𝑉)) MndHom (freeMnd‘(𝐶𝑉))) ∧ (𝐹 ∘ (varFMnd‘(𝐶𝑉))) = (𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)))) → 𝐹 = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
14157, 58, 60, 129, 139, 140syl32anc 1376 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 = (𝑟 ∈ Word (𝐶𝑉) ↦ ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ (𝐹‘⟨“𝑣”⟩)) ∘ 𝑟))))
14237, 51, 1413eqtr4rd 2789 . . . 4 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 = (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))))
1434, 2, 1mrsubff 33374 . . . . . . 7 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
144143ffnd 6585 . . . . . 6 (𝑇𝑊𝑆 Fn (𝑅pm 𝑉))
145144adantr 480 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝑆 Fn (𝑅pm 𝑉))
1462fvexi 6770 . . . . . . 7 𝑅 ∈ V
147 elpm2r 8591 . . . . . . 7 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ ((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉)) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
148146, 53, 147mpanl12 698 . . . . . 6 (((𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)):𝑉𝑅𝑉𝑉) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
14947, 48, 148sylancl 585 . . . . 5 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉))
150 fnfvelrn 6940 . . . . 5 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩)) ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) ∈ ran 𝑆)
151145, 149, 150syl2anc 583 . . . 4 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → (𝑆‘(𝑤𝑉 ↦ (𝐹‘⟨“𝑤”⟩))) ∈ ran 𝑆)
152142, 151eqeltrd 2839 . . 3 ((𝑇𝑊 ∧ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))) → 𝐹 ∈ ran 𝑆)
153152ex 412 . 2 (𝑇𝑊 → ((𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦))) → 𝐹 ∈ ran 𝑆))
15411, 153impbid2 225 1 (𝑇𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅𝑅 ∧ ∀𝑐 ∈ (𝐶𝑉)(𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥𝑅𝑦𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹𝑥) ++ (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  ifcif 4456  cmpt 5153  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  pm cpm 8574  0cc0 10802   + caddc 10805  0cn0 12163  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  Mndcmnd 18300   MndHom cmhm 18343  freeMndcfrmd 18401  varFMndcvrmd 18402  mCNcmcn 33322  mVRcmvar 33323  mRExcmrex 33328  mRSubstcmrsub 33332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-frmd 18403  df-vrmd 18404  df-mrex 33348  df-mrsub 33352
This theorem is referenced by:  mrsubco  33383
  Copyright terms: Public domain W3C validator