| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revs1 | Structured version Visualization version GIF version | ||
| Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| revs1 | ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cli 14530 | . . . . 5 ⊢ 〈“𝑆”〉 ∈ Word V | |
| 2 | s1len 14531 | . . . . . . 7 ⊢ (♯‘〈“𝑆”〉) = 1 | |
| 3 | 1nn 12157 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 2, 3 | eqeltri 2824 | . . . . . 6 ⊢ (♯‘〈“𝑆”〉) ∈ ℕ |
| 5 | lbfzo0 13620 | . . . . . 6 ⊢ (0 ∈ (0..^(♯‘〈“𝑆”〉)) ↔ (♯‘〈“𝑆”〉) ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“𝑆”〉)) |
| 7 | revfv 14687 | . . . . 5 ⊢ ((〈“𝑆”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑆”〉))) → ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0))) | |
| 8 | 1, 6, 7 | mp2an 692 | . . . 4 ⊢ ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) |
| 9 | 2 | oveq1i 7363 | . . . . . . . . 9 ⊢ ((♯‘〈“𝑆”〉) − 1) = (1 − 1) |
| 10 | 1m1e0 12218 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 11 | 9, 10 | eqtri 2752 | . . . . . . . 8 ⊢ ((♯‘〈“𝑆”〉) − 1) = 0 |
| 12 | 11 | oveq1i 7363 | . . . . . . 7 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = (0 − 0) |
| 13 | 0m0e0 12261 | . . . . . . 7 ⊢ (0 − 0) = 0 | |
| 14 | 12, 13 | eqtri 2752 | . . . . . 6 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = 0 |
| 15 | 14 | fveq2i 6829 | . . . . 5 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = (〈“𝑆”〉‘0) |
| 16 | ids1 14522 | . . . . . . 7 ⊢ 〈“𝑆”〉 = 〈“( I ‘𝑆)”〉 | |
| 17 | 16 | fveq1i 6827 | . . . . . 6 ⊢ (〈“𝑆”〉‘0) = (〈“( I ‘𝑆)”〉‘0) |
| 18 | fvex 6839 | . . . . . . 7 ⊢ ( I ‘𝑆) ∈ V | |
| 19 | s1fv 14535 | . . . . . . 7 ⊢ (( I ‘𝑆) ∈ V → (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆) |
| 21 | 17, 20 | eqtri 2752 | . . . . 5 ⊢ (〈“𝑆”〉‘0) = ( I ‘𝑆) |
| 22 | 15, 21 | eqtri 2752 | . . . 4 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = ( I ‘𝑆) |
| 23 | 8, 22 | eqtri 2752 | . . 3 ⊢ ((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) |
| 24 | s1eq 14525 | . . 3 ⊢ (((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) → 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉) | |
| 25 | 23, 24 | ax-mp 5 | . 2 ⊢ 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉 |
| 26 | revcl 14685 | . . . 4 ⊢ (〈“𝑆”〉 ∈ Word V → (reverse‘〈“𝑆”〉) ∈ Word V) | |
| 27 | 1, 26 | ax-mp 5 | . . 3 ⊢ (reverse‘〈“𝑆”〉) ∈ Word V |
| 28 | revlen 14686 | . . . . 5 ⊢ (〈“𝑆”〉 ∈ Word V → (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉)) | |
| 29 | 1, 28 | ax-mp 5 | . . . 4 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉) |
| 30 | 29, 2 | eqtri 2752 | . . 3 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = 1 |
| 31 | eqs1 14537 | . . 3 ⊢ (((reverse‘〈“𝑆”〉) ∈ Word V ∧ (♯‘(reverse‘〈“𝑆”〉)) = 1) → (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉) | |
| 32 | 27, 30, 31 | mp2an 692 | . 2 ⊢ (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉 |
| 33 | 25, 32, 16 | 3eqtr4i 2762 | 1 ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 I cid 5517 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 − cmin 11365 ℕcn 12146 ..^cfzo 13575 ♯chash 14255 Word cword 14438 〈“cs1 14520 reversecreverse 14682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-s1 14521 df-reverse 14683 |
| This theorem is referenced by: gsumwrev 19263 efginvrel2 19624 vrgpinv 19666 |
| Copyright terms: Public domain | W3C validator |