| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revs1 | Structured version Visualization version GIF version | ||
| Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| revs1 | ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cli 14520 | . . . . 5 ⊢ 〈“𝑆”〉 ∈ Word V | |
| 2 | s1len 14521 | . . . . . . 7 ⊢ (♯‘〈“𝑆”〉) = 1 | |
| 3 | 1nn 12147 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 2, 3 | eqeltri 2829 | . . . . . 6 ⊢ (♯‘〈“𝑆”〉) ∈ ℕ |
| 5 | lbfzo0 13606 | . . . . . 6 ⊢ (0 ∈ (0..^(♯‘〈“𝑆”〉)) ↔ (♯‘〈“𝑆”〉) ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“𝑆”〉)) |
| 7 | revfv 14677 | . . . . 5 ⊢ ((〈“𝑆”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑆”〉))) → ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0))) | |
| 8 | 1, 6, 7 | mp2an 692 | . . . 4 ⊢ ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) |
| 9 | 2 | oveq1i 7365 | . . . . . . . . 9 ⊢ ((♯‘〈“𝑆”〉) − 1) = (1 − 1) |
| 10 | 1m1e0 12208 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 11 | 9, 10 | eqtri 2756 | . . . . . . . 8 ⊢ ((♯‘〈“𝑆”〉) − 1) = 0 |
| 12 | 11 | oveq1i 7365 | . . . . . . 7 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = (0 − 0) |
| 13 | 0m0e0 12251 | . . . . . . 7 ⊢ (0 − 0) = 0 | |
| 14 | 12, 13 | eqtri 2756 | . . . . . 6 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = 0 |
| 15 | 14 | fveq2i 6834 | . . . . 5 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = (〈“𝑆”〉‘0) |
| 16 | ids1 14512 | . . . . . . 7 ⊢ 〈“𝑆”〉 = 〈“( I ‘𝑆)”〉 | |
| 17 | 16 | fveq1i 6832 | . . . . . 6 ⊢ (〈“𝑆”〉‘0) = (〈“( I ‘𝑆)”〉‘0) |
| 18 | fvex 6844 | . . . . . . 7 ⊢ ( I ‘𝑆) ∈ V | |
| 19 | s1fv 14525 | . . . . . . 7 ⊢ (( I ‘𝑆) ∈ V → (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆) |
| 21 | 17, 20 | eqtri 2756 | . . . . 5 ⊢ (〈“𝑆”〉‘0) = ( I ‘𝑆) |
| 22 | 15, 21 | eqtri 2756 | . . . 4 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = ( I ‘𝑆) |
| 23 | 8, 22 | eqtri 2756 | . . 3 ⊢ ((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) |
| 24 | s1eq 14515 | . . 3 ⊢ (((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) → 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉) | |
| 25 | 23, 24 | ax-mp 5 | . 2 ⊢ 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉 |
| 26 | revcl 14675 | . . . 4 ⊢ (〈“𝑆”〉 ∈ Word V → (reverse‘〈“𝑆”〉) ∈ Word V) | |
| 27 | 1, 26 | ax-mp 5 | . . 3 ⊢ (reverse‘〈“𝑆”〉) ∈ Word V |
| 28 | revlen 14676 | . . . . 5 ⊢ (〈“𝑆”〉 ∈ Word V → (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉)) | |
| 29 | 1, 28 | ax-mp 5 | . . . 4 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉) |
| 30 | 29, 2 | eqtri 2756 | . . 3 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = 1 |
| 31 | eqs1 14527 | . . 3 ⊢ (((reverse‘〈“𝑆”〉) ∈ Word V ∧ (♯‘(reverse‘〈“𝑆”〉)) = 1) → (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉) | |
| 32 | 27, 30, 31 | mp2an 692 | . 2 ⊢ (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉 |
| 33 | 25, 32, 16 | 3eqtr4i 2766 | 1 ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 I cid 5515 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 − cmin 11355 ℕcn 12136 ..^cfzo 13561 ♯chash 14244 Word cword 14427 〈“cs1 14510 reversecreverse 14672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-s1 14511 df-reverse 14673 |
| This theorem is referenced by: gsumwrev 19286 efginvrel2 19647 vrgpinv 19689 |
| Copyright terms: Public domain | W3C validator |