MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revs1 Structured version   Visualization version   GIF version

Theorem revs1 14722
Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
revs1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩

Proof of Theorem revs1
StepHypRef Expression
1 s1cli 14562 . . . . 5 ⟨“𝑆”⟩ ∈ Word V
2 s1len 14563 . . . . . . 7 (♯‘⟨“𝑆”⟩) = 1
3 1nn 12230 . . . . . . 7 1 ∈ ℕ
42, 3eqeltri 2828 . . . . . 6 (♯‘⟨“𝑆”⟩) ∈ ℕ
5 lbfzo0 13679 . . . . . 6 (0 ∈ (0..^(♯‘⟨“𝑆”⟩)) ↔ (♯‘⟨“𝑆”⟩) ∈ ℕ)
64, 5mpbir 230 . . . . 5 0 ∈ (0..^(♯‘⟨“𝑆”⟩))
7 revfv 14720 . . . . 5 ((⟨“𝑆”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑆”⟩))) → ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)))
81, 6, 7mp2an 689 . . . 4 ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0))
92oveq1i 7422 . . . . . . . . 9 ((♯‘⟨“𝑆”⟩) − 1) = (1 − 1)
10 1m1e0 12291 . . . . . . . . 9 (1 − 1) = 0
119, 10eqtri 2759 . . . . . . . 8 ((♯‘⟨“𝑆”⟩) − 1) = 0
1211oveq1i 7422 . . . . . . 7 (((♯‘⟨“𝑆”⟩) − 1) − 0) = (0 − 0)
13 0m0e0 12339 . . . . . . 7 (0 − 0) = 0
1412, 13eqtri 2759 . . . . . 6 (((♯‘⟨“𝑆”⟩) − 1) − 0) = 0
1514fveq2i 6894 . . . . 5 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = (⟨“𝑆”⟩‘0)
16 ids1 14554 . . . . . . 7 ⟨“𝑆”⟩ = ⟨“( I ‘𝑆)”⟩
1716fveq1i 6892 . . . . . 6 (⟨“𝑆”⟩‘0) = (⟨“( I ‘𝑆)”⟩‘0)
18 fvex 6904 . . . . . . 7 ( I ‘𝑆) ∈ V
19 s1fv 14567 . . . . . . 7 (( I ‘𝑆) ∈ V → (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆))
2018, 19ax-mp 5 . . . . . 6 (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆)
2117, 20eqtri 2759 . . . . 5 (⟨“𝑆”⟩‘0) = ( I ‘𝑆)
2215, 21eqtri 2759 . . . 4 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = ( I ‘𝑆)
238, 22eqtri 2759 . . 3 ((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆)
24 s1eq 14557 . . 3 (((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆) → ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩)
2523, 24ax-mp 5 . 2 ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩
26 revcl 14718 . . . 4 (⟨“𝑆”⟩ ∈ Word V → (reverse‘⟨“𝑆”⟩) ∈ Word V)
271, 26ax-mp 5 . . 3 (reverse‘⟨“𝑆”⟩) ∈ Word V
28 revlen 14719 . . . . 5 (⟨“𝑆”⟩ ∈ Word V → (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩))
291, 28ax-mp 5 . . . 4 (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩)
3029, 2eqtri 2759 . . 3 (♯‘(reverse‘⟨“𝑆”⟩)) = 1
31 eqs1 14569 . . 3 (((reverse‘⟨“𝑆”⟩) ∈ Word V ∧ (♯‘(reverse‘⟨“𝑆”⟩)) = 1) → (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩)
3227, 30, 31mp2an 689 . 2 (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩
3325, 32, 163eqtr4i 2769 1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3473   I cid 5573  cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117  cmin 11451  cn 12219  ..^cfzo 13634  chash 14297  Word cword 14471  ⟨“cs1 14552  reversecreverse 14715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-s1 14553  df-reverse 14716
This theorem is referenced by:  gsumwrev  19281  efginvrel2  19643  vrgpinv  19685
  Copyright terms: Public domain W3C validator