MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revs1 Structured version   Visualization version   GIF version

Theorem revs1 14478
Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
revs1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩

Proof of Theorem revs1
StepHypRef Expression
1 s1cli 14310 . . . . 5 ⟨“𝑆”⟩ ∈ Word V
2 s1len 14311 . . . . . . 7 (♯‘⟨“𝑆”⟩) = 1
3 1nn 11984 . . . . . . 7 1 ∈ ℕ
42, 3eqeltri 2835 . . . . . 6 (♯‘⟨“𝑆”⟩) ∈ ℕ
5 lbfzo0 13427 . . . . . 6 (0 ∈ (0..^(♯‘⟨“𝑆”⟩)) ↔ (♯‘⟨“𝑆”⟩) ∈ ℕ)
64, 5mpbir 230 . . . . 5 0 ∈ (0..^(♯‘⟨“𝑆”⟩))
7 revfv 14476 . . . . 5 ((⟨“𝑆”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑆”⟩))) → ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)))
81, 6, 7mp2an 689 . . . 4 ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0))
92oveq1i 7285 . . . . . . . . 9 ((♯‘⟨“𝑆”⟩) − 1) = (1 − 1)
10 1m1e0 12045 . . . . . . . . 9 (1 − 1) = 0
119, 10eqtri 2766 . . . . . . . 8 ((♯‘⟨“𝑆”⟩) − 1) = 0
1211oveq1i 7285 . . . . . . 7 (((♯‘⟨“𝑆”⟩) − 1) − 0) = (0 − 0)
13 0m0e0 12093 . . . . . . 7 (0 − 0) = 0
1412, 13eqtri 2766 . . . . . 6 (((♯‘⟨“𝑆”⟩) − 1) − 0) = 0
1514fveq2i 6777 . . . . 5 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = (⟨“𝑆”⟩‘0)
16 ids1 14302 . . . . . . 7 ⟨“𝑆”⟩ = ⟨“( I ‘𝑆)”⟩
1716fveq1i 6775 . . . . . 6 (⟨“𝑆”⟩‘0) = (⟨“( I ‘𝑆)”⟩‘0)
18 fvex 6787 . . . . . . 7 ( I ‘𝑆) ∈ V
19 s1fv 14315 . . . . . . 7 (( I ‘𝑆) ∈ V → (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆))
2018, 19ax-mp 5 . . . . . 6 (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆)
2117, 20eqtri 2766 . . . . 5 (⟨“𝑆”⟩‘0) = ( I ‘𝑆)
2215, 21eqtri 2766 . . . 4 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = ( I ‘𝑆)
238, 22eqtri 2766 . . 3 ((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆)
24 s1eq 14305 . . 3 (((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆) → ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩)
2523, 24ax-mp 5 . 2 ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩
26 revcl 14474 . . . 4 (⟨“𝑆”⟩ ∈ Word V → (reverse‘⟨“𝑆”⟩) ∈ Word V)
271, 26ax-mp 5 . . 3 (reverse‘⟨“𝑆”⟩) ∈ Word V
28 revlen 14475 . . . . 5 (⟨“𝑆”⟩ ∈ Word V → (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩))
291, 28ax-mp 5 . . . 4 (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩)
3029, 2eqtri 2766 . . 3 (♯‘(reverse‘⟨“𝑆”⟩)) = 1
31 eqs1 14317 . . 3 (((reverse‘⟨“𝑆”⟩) ∈ Word V ∧ (♯‘(reverse‘⟨“𝑆”⟩)) = 1) → (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩)
3227, 30, 31mp2an 689 . 2 (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩
3325, 32, 163eqtr4i 2776 1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432   I cid 5488  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  cmin 11205  cn 11973  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs1 14300  reversecreverse 14471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-s1 14301  df-reverse 14472
This theorem is referenced by:  gsumwrev  18973  efginvrel2  19333  vrgpinv  19375
  Copyright terms: Public domain W3C validator