| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > revs1 | Structured version Visualization version GIF version | ||
| Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| revs1 | ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cli 14508 | . . . . 5 ⊢ 〈“𝑆”〉 ∈ Word V | |
| 2 | s1len 14509 | . . . . . . 7 ⊢ (♯‘〈“𝑆”〉) = 1 | |
| 3 | 1nn 12131 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
| 4 | 2, 3 | eqeltri 2827 | . . . . . 6 ⊢ (♯‘〈“𝑆”〉) ∈ ℕ |
| 5 | lbfzo0 13594 | . . . . . 6 ⊢ (0 ∈ (0..^(♯‘〈“𝑆”〉)) ↔ (♯‘〈“𝑆”〉) ∈ ℕ) | |
| 6 | 4, 5 | mpbir 231 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“𝑆”〉)) |
| 7 | revfv 14665 | . . . . 5 ⊢ ((〈“𝑆”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑆”〉))) → ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0))) | |
| 8 | 1, 6, 7 | mp2an 692 | . . . 4 ⊢ ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) |
| 9 | 2 | oveq1i 7351 | . . . . . . . . 9 ⊢ ((♯‘〈“𝑆”〉) − 1) = (1 − 1) |
| 10 | 1m1e0 12192 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 11 | 9, 10 | eqtri 2754 | . . . . . . . 8 ⊢ ((♯‘〈“𝑆”〉) − 1) = 0 |
| 12 | 11 | oveq1i 7351 | . . . . . . 7 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = (0 − 0) |
| 13 | 0m0e0 12235 | . . . . . . 7 ⊢ (0 − 0) = 0 | |
| 14 | 12, 13 | eqtri 2754 | . . . . . 6 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = 0 |
| 15 | 14 | fveq2i 6820 | . . . . 5 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = (〈“𝑆”〉‘0) |
| 16 | ids1 14500 | . . . . . . 7 ⊢ 〈“𝑆”〉 = 〈“( I ‘𝑆)”〉 | |
| 17 | 16 | fveq1i 6818 | . . . . . 6 ⊢ (〈“𝑆”〉‘0) = (〈“( I ‘𝑆)”〉‘0) |
| 18 | fvex 6830 | . . . . . . 7 ⊢ ( I ‘𝑆) ∈ V | |
| 19 | s1fv 14513 | . . . . . . 7 ⊢ (( I ‘𝑆) ∈ V → (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆) |
| 21 | 17, 20 | eqtri 2754 | . . . . 5 ⊢ (〈“𝑆”〉‘0) = ( I ‘𝑆) |
| 22 | 15, 21 | eqtri 2754 | . . . 4 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = ( I ‘𝑆) |
| 23 | 8, 22 | eqtri 2754 | . . 3 ⊢ ((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) |
| 24 | s1eq 14503 | . . 3 ⊢ (((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) → 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉) | |
| 25 | 23, 24 | ax-mp 5 | . 2 ⊢ 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉 |
| 26 | revcl 14663 | . . . 4 ⊢ (〈“𝑆”〉 ∈ Word V → (reverse‘〈“𝑆”〉) ∈ Word V) | |
| 27 | 1, 26 | ax-mp 5 | . . 3 ⊢ (reverse‘〈“𝑆”〉) ∈ Word V |
| 28 | revlen 14664 | . . . . 5 ⊢ (〈“𝑆”〉 ∈ Word V → (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉)) | |
| 29 | 1, 28 | ax-mp 5 | . . . 4 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉) |
| 30 | 29, 2 | eqtri 2754 | . . 3 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = 1 |
| 31 | eqs1 14515 | . . 3 ⊢ (((reverse‘〈“𝑆”〉) ∈ Word V ∧ (♯‘(reverse‘〈“𝑆”〉)) = 1) → (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉) | |
| 32 | 27, 30, 31 | mp2an 692 | . 2 ⊢ (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉 |
| 33 | 25, 32, 16 | 3eqtr4i 2764 | 1 ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 I cid 5505 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 − cmin 11339 ℕcn 12120 ..^cfzo 13549 ♯chash 14232 Word cword 14415 〈“cs1 14498 reversecreverse 14660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-s1 14499 df-reverse 14661 |
| This theorem is referenced by: gsumwrev 19273 efginvrel2 19634 vrgpinv 19676 |
| Copyright terms: Public domain | W3C validator |