MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revs1 Structured version   Visualization version   GIF version

Theorem revs1 13982
Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
revs1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩

Proof of Theorem revs1
StepHypRef Expression
1 s1cli 13766 . . . . 5 ⟨“𝑆”⟩ ∈ Word V
2 s1len 13767 . . . . . . 7 (♯‘⟨“𝑆”⟩) = 1
3 1nn 11450 . . . . . . 7 1 ∈ ℕ
42, 3eqeltri 2856 . . . . . 6 (♯‘⟨“𝑆”⟩) ∈ ℕ
5 lbfzo0 12890 . . . . . 6 (0 ∈ (0..^(♯‘⟨“𝑆”⟩)) ↔ (♯‘⟨“𝑆”⟩) ∈ ℕ)
64, 5mpbir 223 . . . . 5 0 ∈ (0..^(♯‘⟨“𝑆”⟩))
7 revfv 13980 . . . . 5 ((⟨“𝑆”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑆”⟩))) → ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)))
81, 6, 7mp2an 679 . . . 4 ((reverse‘⟨“𝑆”⟩)‘0) = (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0))
92oveq1i 6984 . . . . . . . . 9 ((♯‘⟨“𝑆”⟩) − 1) = (1 − 1)
10 1m1e0 11510 . . . . . . . . 9 (1 − 1) = 0
119, 10eqtri 2796 . . . . . . . 8 ((♯‘⟨“𝑆”⟩) − 1) = 0
1211oveq1i 6984 . . . . . . 7 (((♯‘⟨“𝑆”⟩) − 1) − 0) = (0 − 0)
13 0m0e0 11565 . . . . . . 7 (0 − 0) = 0
1412, 13eqtri 2796 . . . . . 6 (((♯‘⟨“𝑆”⟩) − 1) − 0) = 0
1514fveq2i 6499 . . . . 5 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = (⟨“𝑆”⟩‘0)
16 ids1 13758 . . . . . . 7 ⟨“𝑆”⟩ = ⟨“( I ‘𝑆)”⟩
1716fveq1i 6497 . . . . . 6 (⟨“𝑆”⟩‘0) = (⟨“( I ‘𝑆)”⟩‘0)
18 fvex 6509 . . . . . . 7 ( I ‘𝑆) ∈ V
19 s1fv 13771 . . . . . . 7 (( I ‘𝑆) ∈ V → (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆))
2018, 19ax-mp 5 . . . . . 6 (⟨“( I ‘𝑆)”⟩‘0) = ( I ‘𝑆)
2117, 20eqtri 2796 . . . . 5 (⟨“𝑆”⟩‘0) = ( I ‘𝑆)
2215, 21eqtri 2796 . . . 4 (⟨“𝑆”⟩‘(((♯‘⟨“𝑆”⟩) − 1) − 0)) = ( I ‘𝑆)
238, 22eqtri 2796 . . 3 ((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆)
24 s1eq 13761 . . 3 (((reverse‘⟨“𝑆”⟩)‘0) = ( I ‘𝑆) → ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩)
2523, 24ax-mp 5 . 2 ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩ = ⟨“( I ‘𝑆)”⟩
26 revcl 13978 . . . 4 (⟨“𝑆”⟩ ∈ Word V → (reverse‘⟨“𝑆”⟩) ∈ Word V)
271, 26ax-mp 5 . . 3 (reverse‘⟨“𝑆”⟩) ∈ Word V
28 revlen 13979 . . . . 5 (⟨“𝑆”⟩ ∈ Word V → (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩))
291, 28ax-mp 5 . . . 4 (♯‘(reverse‘⟨“𝑆”⟩)) = (♯‘⟨“𝑆”⟩)
3029, 2eqtri 2796 . . 3 (♯‘(reverse‘⟨“𝑆”⟩)) = 1
31 eqs1 13773 . . 3 (((reverse‘⟨“𝑆”⟩) ∈ Word V ∧ (♯‘(reverse‘⟨“𝑆”⟩)) = 1) → (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩)
3227, 30, 31mp2an 679 . 2 (reverse‘⟨“𝑆”⟩) = ⟨“((reverse‘⟨“𝑆”⟩)‘0)”⟩
3325, 32, 163eqtr4i 2806 1 (reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  Vcvv 3409   I cid 5307  cfv 6185  (class class class)co 6974  0cc0 10333  1c1 10334  cmin 10668  cn 11437  ..^cfzo 12847  chash 13503  Word cword 13670  ⟨“cs1 13756  reversecreverse 13975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-hash 13504  df-word 13671  df-s1 13757  df-reverse 13976
This theorem is referenced by:  gsumwrev  18277  efginvrel2  18623  vrgpinv  18667
  Copyright terms: Public domain W3C validator