![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > revs1 | Structured version Visualization version GIF version |
Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
revs1 | ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cli 14653 | . . . . 5 ⊢ 〈“𝑆”〉 ∈ Word V | |
2 | s1len 14654 | . . . . . . 7 ⊢ (♯‘〈“𝑆”〉) = 1 | |
3 | 1nn 12304 | . . . . . . 7 ⊢ 1 ∈ ℕ | |
4 | 2, 3 | eqeltri 2840 | . . . . . 6 ⊢ (♯‘〈“𝑆”〉) ∈ ℕ |
5 | lbfzo0 13756 | . . . . . 6 ⊢ (0 ∈ (0..^(♯‘〈“𝑆”〉)) ↔ (♯‘〈“𝑆”〉) ∈ ℕ) | |
6 | 4, 5 | mpbir 231 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“𝑆”〉)) |
7 | revfv 14811 | . . . . 5 ⊢ ((〈“𝑆”〉 ∈ Word V ∧ 0 ∈ (0..^(♯‘〈“𝑆”〉))) → ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0))) | |
8 | 1, 6, 7 | mp2an 691 | . . . 4 ⊢ ((reverse‘〈“𝑆”〉)‘0) = (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) |
9 | 2 | oveq1i 7458 | . . . . . . . . 9 ⊢ ((♯‘〈“𝑆”〉) − 1) = (1 − 1) |
10 | 1m1e0 12365 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
11 | 9, 10 | eqtri 2768 | . . . . . . . 8 ⊢ ((♯‘〈“𝑆”〉) − 1) = 0 |
12 | 11 | oveq1i 7458 | . . . . . . 7 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = (0 − 0) |
13 | 0m0e0 12413 | . . . . . . 7 ⊢ (0 − 0) = 0 | |
14 | 12, 13 | eqtri 2768 | . . . . . 6 ⊢ (((♯‘〈“𝑆”〉) − 1) − 0) = 0 |
15 | 14 | fveq2i 6923 | . . . . 5 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = (〈“𝑆”〉‘0) |
16 | ids1 14645 | . . . . . . 7 ⊢ 〈“𝑆”〉 = 〈“( I ‘𝑆)”〉 | |
17 | 16 | fveq1i 6921 | . . . . . 6 ⊢ (〈“𝑆”〉‘0) = (〈“( I ‘𝑆)”〉‘0) |
18 | fvex 6933 | . . . . . . 7 ⊢ ( I ‘𝑆) ∈ V | |
19 | s1fv 14658 | . . . . . . 7 ⊢ (( I ‘𝑆) ∈ V → (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆)) | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 ⊢ (〈“( I ‘𝑆)”〉‘0) = ( I ‘𝑆) |
21 | 17, 20 | eqtri 2768 | . . . . 5 ⊢ (〈“𝑆”〉‘0) = ( I ‘𝑆) |
22 | 15, 21 | eqtri 2768 | . . . 4 ⊢ (〈“𝑆”〉‘(((♯‘〈“𝑆”〉) − 1) − 0)) = ( I ‘𝑆) |
23 | 8, 22 | eqtri 2768 | . . 3 ⊢ ((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) |
24 | s1eq 14648 | . . 3 ⊢ (((reverse‘〈“𝑆”〉)‘0) = ( I ‘𝑆) → 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉) | |
25 | 23, 24 | ax-mp 5 | . 2 ⊢ 〈“((reverse‘〈“𝑆”〉)‘0)”〉 = 〈“( I ‘𝑆)”〉 |
26 | revcl 14809 | . . . 4 ⊢ (〈“𝑆”〉 ∈ Word V → (reverse‘〈“𝑆”〉) ∈ Word V) | |
27 | 1, 26 | ax-mp 5 | . . 3 ⊢ (reverse‘〈“𝑆”〉) ∈ Word V |
28 | revlen 14810 | . . . . 5 ⊢ (〈“𝑆”〉 ∈ Word V → (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉)) | |
29 | 1, 28 | ax-mp 5 | . . . 4 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = (♯‘〈“𝑆”〉) |
30 | 29, 2 | eqtri 2768 | . . 3 ⊢ (♯‘(reverse‘〈“𝑆”〉)) = 1 |
31 | eqs1 14660 | . . 3 ⊢ (((reverse‘〈“𝑆”〉) ∈ Word V ∧ (♯‘(reverse‘〈“𝑆”〉)) = 1) → (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉) | |
32 | 27, 30, 31 | mp2an 691 | . 2 ⊢ (reverse‘〈“𝑆”〉) = 〈“((reverse‘〈“𝑆”〉)‘0)”〉 |
33 | 25, 32, 16 | 3eqtr4i 2778 | 1 ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 I cid 5592 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 − cmin 11520 ℕcn 12293 ..^cfzo 13711 ♯chash 14379 Word cword 14562 〈“cs1 14643 reversecreverse 14806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-s1 14644 df-reverse 14807 |
This theorem is referenced by: gsumwrev 19409 efginvrel2 19769 vrgpinv 19811 |
Copyright terms: Public domain | W3C validator |