MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccatpfxs1lem Structured version   Visualization version   GIF version

Theorem reuccatpfxs1lem 13816
Description: Lemma for reuccatpfxs1 13817. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
reuccatpfxs1lem (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Distinct variable groups:   𝑆,𝑠   𝑥,𝑈   𝑉,𝑠,𝑥   𝑊,𝑠,𝑥   𝑋,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑠)

Proof of Theorem reuccatpfxs1lem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2866 . . . . . . 7 (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 fveq2 6411 . . . . . . . 8 (𝑥 = 𝑈 → (♯‘𝑥) = (♯‘𝑈))
32eqeq1d 2801 . . . . . . 7 (𝑥 = 𝑈 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑈) = ((♯‘𝑊) + 1)))
41, 3anbi12d 625 . . . . . 6 (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
54rspcv 3493 . . . . 5 (𝑈𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
65adantl 474 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
7 simpl 475 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈𝑋) → 𝑊 ∈ Word 𝑉)
87adantr 473 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
9 simpl 475 . . . . . . . . 9 ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
109adantl 474 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉)
11 simprr 790 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (♯‘𝑈) = ((♯‘𝑊) + 1))
12 ccats1pfxeqrex 13767 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
138, 10, 11, 12syl3anc 1491 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
14 s1eq 13620 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → ⟨“𝑠”⟩ = ⟨“𝑢”⟩)
1514oveq2d 6894 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑊 ++ ⟨“𝑠”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1615eleq1d 2863 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
17 eqeq2 2810 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑆 = 𝑠𝑆 = 𝑢))
1816, 17imbi12d 336 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ↔ ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
1918rspcv 3493 . . . . . . . . . . . 12 (𝑢𝑉 → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
20 eleq1 2866 . . . . . . . . . . . . . 14 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
21 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢))
2221imp 396 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → 𝑆 = 𝑢)
2322eqcomd 2805 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → 𝑢 = 𝑆)
2423s1eqd 13621 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2524oveq2d 6894 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑊 ++ ⟨“𝑢”⟩) = (𝑊 ++ ⟨“𝑆”⟩))
2625eqeq2d 2809 . . . . . . . . . . . . . . . . 17 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) ↔ 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2726biimpd 221 . . . . . . . . . . . . . . . 16 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2827ex 402 . . . . . . . . . . . . . . 15 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2928com13 88 . . . . . . . . . . . . . 14 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3020, 29sylbid 232 . . . . . . . . . . . . 13 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3130com3l 89 . . . . . . . . . . . 12 (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3219, 31sylan9r 505 . . . . . . . . . . 11 ((𝑈𝑋𝑢𝑉) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3332com23 86 . . . . . . . . . 10 ((𝑈𝑋𝑢𝑉) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3433rexlimdva 3212 . . . . . . . . 9 (𝑈𝑋 → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3534adantl 474 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3635adantr 473 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3713, 36syld 47 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3837com23 86 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3938ex 402 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
406, 39syld 47 . . 3 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4140com23 86 . 2 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
42413imp 1138 1 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  wrex 3090  cfv 6101  (class class class)co 6878  1c1 10225   + caddc 10227  chash 13370  Word cword 13534   ++ cconcat 13590  ⟨“cs1 13615   prefix cpfx 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-lsw 13583  df-concat 13591  df-s1 13616  df-substr 13665  df-pfx 13714
This theorem is referenced by:  reuccatpfxs1  13817
  Copyright terms: Public domain W3C validator