MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccatpfxs1lem Structured version   Visualization version   GIF version

Theorem reuccatpfxs1lem 14634
Description: Lemma for reuccatpfxs1 14635. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
reuccatpfxs1lem (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Distinct variable groups:   𝑆,𝑠   𝑥,𝑈   𝑉,𝑠,𝑥   𝑊,𝑠,𝑥   𝑋,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑠)

Proof of Theorem reuccatpfxs1lem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2825 . . . . . . 7 (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 fveqeq2 6851 . . . . . . 7 (𝑥 = 𝑈 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑈) = ((♯‘𝑊) + 1)))
31, 2anbi12d 631 . . . . . 6 (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
43rspcv 3577 . . . . 5 (𝑈𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
54adantl 482 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
6 simpl 483 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈𝑋) → 𝑊 ∈ Word 𝑉)
76adantr 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
8 simpl 483 . . . . . . . . 9 ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
98adantl 482 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉)
10 simprr 771 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (♯‘𝑈) = ((♯‘𝑊) + 1))
11 ccats1pfxeqrex 14603 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
127, 9, 10, 11syl3anc 1371 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
13 s1eq 14488 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → ⟨“𝑠”⟩ = ⟨“𝑢”⟩)
1413oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑊 ++ ⟨“𝑠”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1514eleq1d 2822 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
16 eqeq2 2748 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑆 = 𝑠𝑆 = 𝑢))
1715, 16imbi12d 344 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ↔ ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
1817rspcv 3577 . . . . . . . . . . . 12 (𝑢𝑉 → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
19 eleq1 2825 . . . . . . . . . . . . . 14 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
20 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢))
2120imp 407 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → 𝑆 = 𝑢)
2221eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → 𝑢 = 𝑆)
2322s1eqd 14489 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2423oveq2d 7373 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑊 ++ ⟨“𝑢”⟩) = (𝑊 ++ ⟨“𝑆”⟩))
2524eqeq2d 2747 . . . . . . . . . . . . . . . . 17 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) ↔ 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2625biimpd 228 . . . . . . . . . . . . . . . 16 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2726ex 413 . . . . . . . . . . . . . . 15 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2827com13 88 . . . . . . . . . . . . . 14 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2919, 28sylbid 239 . . . . . . . . . . . . 13 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3029com3l 89 . . . . . . . . . . . 12 (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3118, 30sylan9r 509 . . . . . . . . . . 11 ((𝑈𝑋𝑢𝑉) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3231com23 86 . . . . . . . . . 10 ((𝑈𝑋𝑢𝑉) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3332rexlimdva 3152 . . . . . . . . 9 (𝑈𝑋 → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3433adantl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3534adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3612, 35syld 47 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3736com23 86 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3837ex 413 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
395, 38syld 47 . . 3 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4039com23 86 . 2 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
41403imp 1111 1 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054  chash 14230  Word cword 14402   ++ cconcat 14458  ⟨“cs1 14483   prefix cpfx 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559
This theorem is referenced by:  reuccatpfxs1  14635
  Copyright terms: Public domain W3C validator