MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccatpfxs1lem Structured version   Visualization version   GIF version

Theorem reuccatpfxs1lem 14785
Description: Lemma for reuccatpfxs1 14786. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
reuccatpfxs1lem (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Distinct variable groups:   𝑆,𝑠   𝑥,𝑈   𝑉,𝑠,𝑥   𝑊,𝑠,𝑥   𝑋,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑠)

Proof of Theorem reuccatpfxs1lem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2828 . . . . . . 7 (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 fveqeq2 6914 . . . . . . 7 (𝑥 = 𝑈 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑈) = ((♯‘𝑊) + 1)))
31, 2anbi12d 632 . . . . . 6 (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
43rspcv 3617 . . . . 5 (𝑈𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
54adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))))
6 simpl 482 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑈𝑋) → 𝑊 ∈ Word 𝑉)
76adantr 480 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
8 simpl 482 . . . . . . . . 9 ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
98adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉)
10 simprr 772 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (♯‘𝑈) = ((♯‘𝑊) + 1))
11 ccats1pfxeqrex 14754 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
127, 9, 10, 11syl3anc 1372 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
13 s1eq 14639 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → ⟨“𝑠”⟩ = ⟨“𝑢”⟩)
1413oveq2d 7448 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (𝑊 ++ ⟨“𝑠”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1514eleq1d 2825 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
16 eqeq2 2748 . . . . . . . . . . . . . 14 (𝑠 = 𝑢 → (𝑆 = 𝑠𝑆 = 𝑢))
1715, 16imbi12d 344 . . . . . . . . . . . . 13 (𝑠 = 𝑢 → (((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ↔ ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
1817rspcv 3617 . . . . . . . . . . . 12 (𝑢𝑉 → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
19 eleq1 2828 . . . . . . . . . . . . . 14 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
20 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢))
2120imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → 𝑆 = 𝑢)
2221eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → 𝑢 = 𝑆)
2322s1eqd 14640 . . . . . . . . . . . . . . . . . . 19 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2423oveq2d 7448 . . . . . . . . . . . . . . . . . 18 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑊 ++ ⟨“𝑢”⟩) = (𝑊 ++ ⟨“𝑆”⟩))
2524eqeq2d 2747 . . . . . . . . . . . . . . . . 17 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) ↔ 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2625biimpd 229 . . . . . . . . . . . . . . . 16 ((((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) ∧ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2726ex 412 . . . . . . . . . . . . . . 15 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2827com13 88 . . . . . . . . . . . . . 14 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2919, 28sylbid 240 . . . . . . . . . . . . 13 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3029com3l 89 . . . . . . . . . . . 12 (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3118, 30sylan9r 508 . . . . . . . . . . 11 ((𝑈𝑋𝑢𝑉) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3231com23 86 . . . . . . . . . 10 ((𝑈𝑋𝑢𝑉) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3332rexlimdva 3154 . . . . . . . . 9 (𝑈𝑋 → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3433adantl 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3534adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3612, 35syld 47 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3736com23 86 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3837ex 412 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
395, 38syld 47 . . 3 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4039com23 86 . 2 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
41403imp 1110 1 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  cfv 6560  (class class class)co 7432  1c1 11157   + caddc 11159  chash 14370  Word cword 14553   ++ cconcat 14609  ⟨“cs1 14634   prefix cpfx 14709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710
This theorem is referenced by:  reuccatpfxs1  14786
  Copyright terms: Public domain W3C validator