| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eleq1 2828 | . . . . . . 7
⊢ (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉 ↔ 𝑈 ∈ Word 𝑉)) | 
| 2 |  | fveqeq2 6914 | . . . . . . 7
⊢ (𝑥 = 𝑈 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑈) = ((♯‘𝑊) + 1))) | 
| 3 | 1, 2 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)))) | 
| 4 | 3 | rspcv 3617 | . . . . 5
⊢ (𝑈 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)))) | 
| 5 | 4 | adantl 481 | . . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)))) | 
| 6 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) → 𝑊 ∈ Word 𝑉) | 
| 7 | 6 | adantr 480 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉) | 
| 8 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉) | 
| 9 | 8 | adantl 481 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉) | 
| 10 |  | simprr 772 | . . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (♯‘𝑈) = ((♯‘𝑊) + 1)) | 
| 11 |  | ccats1pfxeqrex 14754 | . . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑢”〉))) | 
| 12 | 7, 9, 10, 11 | syl3anc 1372 | . . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑢 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑢”〉))) | 
| 13 |  | s1eq 14639 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑢 → 〈“𝑠”〉 = 〈“𝑢”〉) | 
| 14 | 13 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑢 → (𝑊 ++ 〈“𝑠”〉) = (𝑊 ++ 〈“𝑢”〉)) | 
| 15 | 14 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑢 → ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 ↔ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋)) | 
| 16 |  | eqeq2 2748 | . . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑢 → (𝑆 = 𝑠 ↔ 𝑆 = 𝑢)) | 
| 17 | 15, 16 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑠 = 𝑢 → (((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) ↔ ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢))) | 
| 18 | 17 | rspcv 3617 | . . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑉 → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢))) | 
| 19 |  | eleq1 2828 | . . . . . . . . . . . . . 14
⊢ (𝑈 = (𝑊 ++ 〈“𝑢”〉) → (𝑈 ∈ 𝑋 ↔ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋)) | 
| 20 |  | id 22 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) → ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢)) | 
| 21 | 20 | imp 406 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) ∧ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋) → 𝑆 = 𝑢) | 
| 22 | 21 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) ∧ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋) → 𝑢 = 𝑆) | 
| 23 | 22 | s1eqd 14640 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) ∧ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋) → 〈“𝑢”〉 = 〈“𝑆”〉) | 
| 24 | 23 | oveq2d 7448 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) ∧ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋) → (𝑊 ++ 〈“𝑢”〉) = (𝑊 ++ 〈“𝑆”〉)) | 
| 25 | 24 | eqeq2d 2747 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) ∧ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋) → (𝑈 = (𝑊 ++ 〈“𝑢”〉) ↔ 𝑈 = (𝑊 ++ 〈“𝑆”〉))) | 
| 26 | 25 | biimpd 229 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) ∧ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋) → (𝑈 = (𝑊 ++ 〈“𝑢”〉) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))) | 
| 27 | 26 | ex 412 | . . . . . . . . . . . . . . 15
⊢ (((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) → ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → (𝑈 = (𝑊 ++ 〈“𝑢”〉) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 28 | 27 | com13 88 | . . . . . . . . . . . . . 14
⊢ (𝑈 = (𝑊 ++ 〈“𝑢”〉) → ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → (((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 29 | 19, 28 | sylbid 240 | . . . . . . . . . . . . 13
⊢ (𝑈 = (𝑊 ++ 〈“𝑢”〉) → (𝑈 ∈ 𝑋 → (((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 30 | 29 | com3l 89 | . . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝑋 → (((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑆 = 𝑢) → (𝑈 = (𝑊 ++ 〈“𝑢”〉) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 31 | 18, 30 | sylan9r 508 | . . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑢 ∈ 𝑉) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → (𝑈 = (𝑊 ++ 〈“𝑢”〉) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 32 | 31 | com23 86 | . . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑋 ∧ 𝑢 ∈ 𝑉) → (𝑈 = (𝑊 ++ 〈“𝑢”〉) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 33 | 32 | rexlimdva 3154 | . . . . . . . . 9
⊢ (𝑈 ∈ 𝑋 → (∃𝑢 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑢”〉) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 34 | 33 | adantl 481 | . . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) → (∃𝑢 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑢”〉) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 35 | 34 | adantr 480 | . . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∃𝑢 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑢”〉) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 36 | 12, 35 | syld 47 | . . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 37 | 36 | com23 86 | . . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉)))) | 
| 38 | 37 | ex 412 | . . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))))) | 
| 39 | 5, 38 | syld 47 | . . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))))) | 
| 40 | 39 | com23 86 | . 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) → (∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) → (∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))))) | 
| 41 | 40 | 3imp 1110 | 1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ ∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))) |