MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdegp1ci Structured version   Visualization version   GIF version

Theorem vdegp1ci 29473
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
vdegp1ai.vg 𝑉 = (Vtx‘𝐺)
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = (iEdg‘𝐺)
vdegp1ai.w 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
vdegp1ai.d ((VtxDeg‘𝐺)‘𝑈) = 𝑃
vdegp1ai.vf (Vtx‘𝐹) = 𝑉
vdegp1bi.x 𝑋𝑉
vdegp1bi.xu 𝑋𝑈
vdegp1ci.f (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
Assertion
Ref Expression
vdegp1ci ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)

Proof of Theorem vdegp1ci
StepHypRef Expression
1 vdegp1ai.vg . 2 𝑉 = (Vtx‘𝐺)
2 vdegp1ai.u . 2 𝑈𝑉
3 vdegp1ai.i . 2 𝐼 = (iEdg‘𝐺)
4 vdegp1ai.w . 2 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
5 vdegp1ai.d . 2 ((VtxDeg‘𝐺)‘𝑈) = 𝑃
6 vdegp1ai.vf . 2 (Vtx‘𝐹) = 𝑉
7 vdegp1bi.x . 2 𝑋𝑉
8 vdegp1bi.xu . 2 𝑋𝑈
9 vdegp1ci.f . . 3 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
10 prcom 4704 . . . . 5 {𝑋, 𝑈} = {𝑈, 𝑋}
11 s1eq 14575 . . . . 5 ({𝑋, 𝑈} = {𝑈, 𝑋} → ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩)
1210, 11ax-mp 5 . . . 4 ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩
1312oveq2i 7405 . . 3 (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
149, 13eqtri 2753 . 2 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
151, 2, 3, 4, 5, 6, 7, 8, 14vdegp1bi 29472 1 ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2927  {crab 3411  cdif 3919  c0 4304  𝒫 cpw 4571  {csn 4597  {cpr 4599   class class class wbr 5115  cfv 6519  (class class class)co 7394  1c1 11087   + caddc 11089  cle 11227  2c2 12252  chash 14305  Word cword 14488   ++ cconcat 14545  ⟨“cs1 14570  Vtxcvtx 28930  iEdgciedg 28931  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-oadd 8447  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-n0 12459  df-xnn0 12532  df-z 12546  df-uz 12810  df-xadd 13086  df-fz 13482  df-fzo 13629  df-hash 14306  df-word 14489  df-concat 14546  df-s1 14571  df-vtx 28932  df-iedg 28933  df-vtxdg 29401
This theorem is referenced by:  konigsberglem2  30189  konigsberglem3  30190
  Copyright terms: Public domain W3C validator