MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdegp1ci Structured version   Visualization version   GIF version

Theorem vdegp1ci 29503
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
vdegp1ai.vg 𝑉 = (Vtx‘𝐺)
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = (iEdg‘𝐺)
vdegp1ai.w 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
vdegp1ai.d ((VtxDeg‘𝐺)‘𝑈) = 𝑃
vdegp1ai.vf (Vtx‘𝐹) = 𝑉
vdegp1bi.x 𝑋𝑉
vdegp1bi.xu 𝑋𝑈
vdegp1ci.f (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
Assertion
Ref Expression
vdegp1ci ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)

Proof of Theorem vdegp1ci
StepHypRef Expression
1 vdegp1ai.vg . 2 𝑉 = (Vtx‘𝐺)
2 vdegp1ai.u . 2 𝑈𝑉
3 vdegp1ai.i . 2 𝐼 = (iEdg‘𝐺)
4 vdegp1ai.w . 2 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
5 vdegp1ai.d . 2 ((VtxDeg‘𝐺)‘𝑈) = 𝑃
6 vdegp1ai.vf . 2 (Vtx‘𝐹) = 𝑉
7 vdegp1bi.x . 2 𝑋𝑉
8 vdegp1bi.xu . 2 𝑋𝑈
9 vdegp1ci.f . . 3 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
10 prcom 4714 . . . . 5 {𝑋, 𝑈} = {𝑈, 𝑋}
11 s1eq 14621 . . . . 5 ({𝑋, 𝑈} = {𝑈, 𝑋} → ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩)
1210, 11ax-mp 5 . . . 4 ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩
1312oveq2i 7425 . . 3 (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
149, 13eqtri 2757 . 2 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
151, 2, 3, 4, 5, 6, 7, 8, 14vdegp1bi 29502 1 ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wne 2931  {crab 3420  cdif 3930  c0 4315  𝒫 cpw 4582  {csn 4608  {cpr 4610   class class class wbr 5125  cfv 6542  (class class class)co 7414  1c1 11139   + caddc 11141  cle 11279  2c2 12304  chash 14352  Word cword 14535   ++ cconcat 14591  ⟨“cs1 14616  Vtxcvtx 28960  iEdgciedg 28961  VtxDegcvtxdg 29430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-oadd 8493  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-n0 12511  df-xnn0 12584  df-z 12598  df-uz 12862  df-xadd 13138  df-fz 13531  df-fzo 13678  df-hash 14353  df-word 14536  df-concat 14592  df-s1 14617  df-vtx 28962  df-iedg 28963  df-vtxdg 29431
This theorem is referenced by:  konigsberglem2  30219  konigsberglem3  30220
  Copyright terms: Public domain W3C validator