MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdegp1ci Structured version   Visualization version   GIF version

Theorem vdegp1ci 29372
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
vdegp1ai.vg 𝑉 = (Vtx‘𝐺)
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = (iEdg‘𝐺)
vdegp1ai.w 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
vdegp1ai.d ((VtxDeg‘𝐺)‘𝑈) = 𝑃
vdegp1ai.vf (Vtx‘𝐹) = 𝑉
vdegp1bi.x 𝑋𝑉
vdegp1bi.xu 𝑋𝑈
vdegp1ci.f (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
Assertion
Ref Expression
vdegp1ci ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)

Proof of Theorem vdegp1ci
StepHypRef Expression
1 vdegp1ai.vg . 2 𝑉 = (Vtx‘𝐺)
2 vdegp1ai.u . 2 𝑈𝑉
3 vdegp1ai.i . 2 𝐼 = (iEdg‘𝐺)
4 vdegp1ai.w . 2 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
5 vdegp1ai.d . 2 ((VtxDeg‘𝐺)‘𝑈) = 𝑃
6 vdegp1ai.vf . 2 (Vtx‘𝐹) = 𝑉
7 vdegp1bi.x . 2 𝑋𝑉
8 vdegp1bi.xu . 2 𝑋𝑈
9 vdegp1ci.f . . 3 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
10 prcom 4741 . . . . 5 {𝑋, 𝑈} = {𝑈, 𝑋}
11 s1eq 14590 . . . . 5 ({𝑋, 𝑈} = {𝑈, 𝑋} → ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩)
1210, 11ax-mp 5 . . . 4 ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩
1312oveq2i 7437 . . 3 (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
149, 13eqtri 2756 . 2 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
151, 2, 3, 4, 5, 6, 7, 8, 14vdegp1bi 29371 1 ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wne 2937  {crab 3430  cdif 3946  c0 4326  𝒫 cpw 4606  {csn 4632  {cpr 4634   class class class wbr 5152  cfv 6553  (class class class)co 7426  1c1 11147   + caddc 11149  cle 11287  2c2 12305  chash 14329  Word cword 14504   ++ cconcat 14560  ⟨“cs1 14585  Vtxcvtx 28829  iEdgciedg 28830  VtxDegcvtxdg 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-xadd 13133  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-concat 14561  df-s1 14586  df-vtx 28831  df-iedg 28832  df-vtxdg 29300
This theorem is referenced by:  konigsberglem2  30083  konigsberglem3  30084
  Copyright terms: Public domain W3C validator