| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdegp1ci | Structured version Visualization version GIF version | ||
| Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
| vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
| vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
| vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
| vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
| vdegp1ci.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) |
| Ref | Expression |
|---|---|
| vdegp1ci | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vdegp1ai.u | . 2 ⊢ 𝑈 ∈ 𝑉 | |
| 3 | vdegp1ai.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vdegp1ai.w | . 2 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
| 5 | vdegp1ai.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
| 6 | vdegp1ai.vf | . 2 ⊢ (Vtx‘𝐹) = 𝑉 | |
| 7 | vdegp1bi.x | . 2 ⊢ 𝑋 ∈ 𝑉 | |
| 8 | vdegp1bi.xu | . 2 ⊢ 𝑋 ≠ 𝑈 | |
| 9 | vdegp1ci.f | . . 3 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) | |
| 10 | prcom 4682 | . . . . 5 ⊢ {𝑋, 𝑈} = {𝑈, 𝑋} | |
| 11 | s1eq 14508 | . . . . 5 ⊢ ({𝑋, 𝑈} = {𝑈, 𝑋} → 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉 |
| 13 | 12 | oveq2i 7357 | . . 3 ⊢ (𝐼 ++ 〈“{𝑋, 𝑈}”〉) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| 14 | 9, 13 | eqtri 2754 | . 2 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | vdegp1bi 29516 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∖ cdif 3894 ∅c0 4280 𝒫 cpw 4547 {csn 4573 {cpr 4575 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 ≤ cle 11147 2c2 12180 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14503 Vtxcvtx 28974 iEdgciedg 28975 VtxDegcvtxdg 29444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-xadd 13012 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-vtx 28976 df-iedg 28977 df-vtxdg 29445 |
| This theorem is referenced by: konigsberglem2 30233 konigsberglem3 30234 |
| Copyright terms: Public domain | W3C validator |