MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdegp1ci Structured version   Visualization version   GIF version

Theorem vdegp1ci 27808
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
vdegp1ai.vg 𝑉 = (Vtx‘𝐺)
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = (iEdg‘𝐺)
vdegp1ai.w 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
vdegp1ai.d ((VtxDeg‘𝐺)‘𝑈) = 𝑃
vdegp1ai.vf (Vtx‘𝐹) = 𝑉
vdegp1bi.x 𝑋𝑉
vdegp1bi.xu 𝑋𝑈
vdegp1ci.f (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
Assertion
Ref Expression
vdegp1ci ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)

Proof of Theorem vdegp1ci
StepHypRef Expression
1 vdegp1ai.vg . 2 𝑉 = (Vtx‘𝐺)
2 vdegp1ai.u . 2 𝑈𝑉
3 vdegp1ai.i . 2 𝐼 = (iEdg‘𝐺)
4 vdegp1ai.w . 2 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
5 vdegp1ai.d . 2 ((VtxDeg‘𝐺)‘𝑈) = 𝑃
6 vdegp1ai.vf . 2 (Vtx‘𝐹) = 𝑉
7 vdegp1bi.x . 2 𝑋𝑉
8 vdegp1bi.xu . 2 𝑋𝑈
9 vdegp1ci.f . . 3 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩)
10 prcom 4665 . . . . 5 {𝑋, 𝑈} = {𝑈, 𝑋}
11 s1eq 14233 . . . . 5 ({𝑋, 𝑈} = {𝑈, 𝑋} → ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩)
1210, 11ax-mp 5 . . . 4 ⟨“{𝑋, 𝑈}”⟩ = ⟨“{𝑈, 𝑋}”⟩
1312oveq2i 7266 . . 3 (𝐼 ++ ⟨“{𝑋, 𝑈}”⟩) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
149, 13eqtri 2766 . 2 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑈, 𝑋}”⟩)
151, 2, 3, 4, 5, 6, 7, 8, 14vdegp1bi 27807 1 ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wne 2942  {crab 3067  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558  {cpr 4560   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cle 10941  2c2 11958  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  Vtxcvtx 27269  iEdgciedg 27270  VtxDegcvtxdg 27735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-vtx 27271  df-iedg 27272  df-vtxdg 27736
This theorem is referenced by:  konigsberglem2  28518  konigsberglem3  28519
  Copyright terms: Public domain W3C validator