| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdegp1ci | Structured version Visualization version GIF version | ||
| Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
| vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
| vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
| vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
| vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
| vdegp1ci.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) |
| Ref | Expression |
|---|---|
| vdegp1ci | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vdegp1ai.u | . 2 ⊢ 𝑈 ∈ 𝑉 | |
| 3 | vdegp1ai.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vdegp1ai.w | . 2 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
| 5 | vdegp1ai.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
| 6 | vdegp1ai.vf | . 2 ⊢ (Vtx‘𝐹) = 𝑉 | |
| 7 | vdegp1bi.x | . 2 ⊢ 𝑋 ∈ 𝑉 | |
| 8 | vdegp1bi.xu | . 2 ⊢ 𝑋 ≠ 𝑈 | |
| 9 | vdegp1ci.f | . . 3 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) | |
| 10 | prcom 4692 | . . . . 5 ⊢ {𝑋, 𝑈} = {𝑈, 𝑋} | |
| 11 | s1eq 14541 | . . . . 5 ⊢ ({𝑋, 𝑈} = {𝑈, 𝑋} → 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉 |
| 13 | 12 | oveq2i 7380 | . . 3 ⊢ (𝐼 ++ 〈“{𝑋, 𝑈}”〉) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| 14 | 9, 13 | eqtri 2752 | . 2 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | vdegp1bi 29441 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 {csn 4585 {cpr 4587 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 1c1 11045 + caddc 11047 ≤ cle 11185 2c2 12217 ♯chash 14271 Word cword 14454 ++ cconcat 14511 〈“cs1 14536 Vtxcvtx 28899 iEdgciedg 28900 VtxDegcvtxdg 29369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-xadd 13049 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-vtx 28901 df-iedg 28902 df-vtxdg 29370 |
| This theorem is referenced by: konigsberglem2 30155 konigsberglem3 30156 |
| Copyright terms: Public domain | W3C validator |