Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdegp1ci | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
vdegp1ci.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) |
Ref | Expression |
---|---|
vdegp1ci | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdegp1ai.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vdegp1ai.u | . 2 ⊢ 𝑈 ∈ 𝑉 | |
3 | vdegp1ai.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vdegp1ai.w | . 2 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
5 | vdegp1ai.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
6 | vdegp1ai.vf | . 2 ⊢ (Vtx‘𝐹) = 𝑉 | |
7 | vdegp1bi.x | . 2 ⊢ 𝑋 ∈ 𝑉 | |
8 | vdegp1bi.xu | . 2 ⊢ 𝑋 ≠ 𝑈 | |
9 | vdegp1ci.f | . . 3 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) | |
10 | prcom 4665 | . . . . 5 ⊢ {𝑋, 𝑈} = {𝑈, 𝑋} | |
11 | s1eq 14233 | . . . . 5 ⊢ ({𝑋, 𝑈} = {𝑈, 𝑋} → 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉 |
13 | 12 | oveq2i 7266 | . . 3 ⊢ (𝐼 ++ 〈“{𝑋, 𝑈}”〉) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
14 | 9, 13 | eqtri 2766 | . 2 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | vdegp1bi 27807 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 {cpr 4560 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ≤ cle 10941 2c2 11958 ♯chash 13972 Word cword 14145 ++ cconcat 14201 〈“cs1 14228 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-vtx 27271 df-iedg 27272 df-vtxdg 27736 |
This theorem is referenced by: konigsberglem2 28518 konigsberglem3 28519 |
Copyright terms: Public domain | W3C validator |