| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdegp1ci | Structured version Visualization version GIF version | ||
| Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑈} to the edge set, where 𝑋 ≠ 𝑈, yields degree 𝑃 + 1. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
| vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
| vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
| vdegp1bi.x | ⊢ 𝑋 ∈ 𝑉 |
| vdegp1bi.xu | ⊢ 𝑋 ≠ 𝑈 |
| vdegp1ci.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) |
| Ref | Expression |
|---|---|
| vdegp1ci | ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vdegp1ai.u | . 2 ⊢ 𝑈 ∈ 𝑉 | |
| 3 | vdegp1ai.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vdegp1ai.w | . 2 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
| 5 | vdegp1ai.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
| 6 | vdegp1ai.vf | . 2 ⊢ (Vtx‘𝐹) = 𝑉 | |
| 7 | vdegp1bi.x | . 2 ⊢ 𝑋 ∈ 𝑉 | |
| 8 | vdegp1bi.xu | . 2 ⊢ 𝑋 ≠ 𝑈 | |
| 9 | vdegp1ci.f | . . 3 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑈}”〉) | |
| 10 | prcom 4684 | . . . . 5 ⊢ {𝑋, 𝑈} = {𝑈, 𝑋} | |
| 11 | s1eq 14507 | . . . . 5 ⊢ ({𝑋, 𝑈} = {𝑈, 𝑋} → 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 〈“{𝑋, 𝑈}”〉 = 〈“{𝑈, 𝑋}”〉 |
| 13 | 12 | oveq2i 7360 | . . 3 ⊢ (𝐼 ++ 〈“{𝑋, 𝑈}”〉) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| 14 | 9, 13 | eqtri 2752 | . 2 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑈, 𝑋}”〉) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 14 | vdegp1bi 29483 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = (𝑃 + 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 ∖ cdif 3900 ∅c0 4284 𝒫 cpw 4551 {csn 4577 {cpr 4579 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 1c1 11010 + caddc 11012 ≤ cle 11150 2c2 12183 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14502 Vtxcvtx 28941 iEdgciedg 28942 VtxDegcvtxdg 29411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-xadd 13015 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-vtx 28943 df-iedg 28944 df-vtxdg 29412 |
| This theorem is referenced by: konigsberglem2 30197 konigsberglem3 30198 |
| Copyright terms: Public domain | W3C validator |