![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhval | Structured version Visualization version GIF version |
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhval | ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = ⟨(𝑌‘𝑋), ⟨“𝑋”⟩⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑌‘𝑣) = (𝑌‘𝑋)) | |
2 | s1eq 14550 | . . 3 ⊢ (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩) | |
3 | 1, 2 | opeq12d 4882 | . 2 ⊢ (𝑣 = 𝑋 → ⟨(𝑌‘𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌‘𝑋), ⟨“𝑋”⟩⟩) |
4 | mvhfval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
5 | mvhfval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
6 | mvhfval.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
7 | 4, 5, 6 | mvhfval 34555 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ ⟨(𝑌‘𝑣), ⟨“𝑣”⟩⟩) |
8 | opex 5465 | . 2 ⊢ ⟨(𝑌‘𝑋), ⟨“𝑋”⟩⟩ ∈ V | |
9 | 3, 7, 8 | fvmpt 6999 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = ⟨(𝑌‘𝑋), ⟨“𝑋”⟩⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⟨cop 4635 ‘cfv 6544 ⟨“cs1 14545 mVRcmvar 34483 mTypecmty 34484 mVHcmvh 34494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-s1 14546 df-mvh 34514 |
This theorem is referenced by: mvhf1 34581 msubvrs 34582 |
Copyright terms: Public domain | W3C validator |