| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhval | Structured version Visualization version GIF version | ||
| Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
| mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhval | ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑌‘𝑣) = (𝑌‘𝑋)) | |
| 2 | s1eq 14508 | . . 3 ⊢ (𝑣 = 𝑋 → 〈“𝑣”〉 = 〈“𝑋”〉) | |
| 3 | 1, 2 | opeq12d 4830 | . 2 ⊢ (𝑣 = 𝑋 → 〈(𝑌‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| 4 | mvhfval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
| 5 | mvhfval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
| 6 | mvhfval.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
| 7 | 4, 5, 6 | mvhfval 35577 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| 8 | opex 5402 | . 2 ⊢ 〈(𝑌‘𝑋), 〈“𝑋”〉〉 ∈ V | |
| 9 | 3, 7, 8 | fvmpt 6929 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4579 ‘cfv 6481 〈“cs1 14503 mVRcmvar 35505 mTypecmty 35506 mVHcmvh 35516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-s1 14504 df-mvh 35536 |
| This theorem is referenced by: mvhf1 35603 msubvrs 35604 |
| Copyright terms: Public domain | W3C validator |