Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhval | Structured version Visualization version GIF version |
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhval | ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑌‘𝑣) = (𝑌‘𝑋)) | |
2 | s1eq 14286 | . . 3 ⊢ (𝑣 = 𝑋 → 〈“𝑣”〉 = 〈“𝑋”〉) | |
3 | 1, 2 | opeq12d 4817 | . 2 ⊢ (𝑣 = 𝑋 → 〈(𝑌‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
4 | mvhfval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
5 | mvhfval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
6 | mvhfval.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
7 | 4, 5, 6 | mvhfval 33474 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
8 | opex 5381 | . 2 ⊢ 〈(𝑌‘𝑋), 〈“𝑋”〉〉 ∈ V | |
9 | 3, 7, 8 | fvmpt 6869 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 〈cop 4572 ‘cfv 6430 〈“cs1 14281 mVRcmvar 33402 mTypecmty 33403 mVHcmvh 33413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-s1 14282 df-mvh 33433 |
This theorem is referenced by: mvhf1 33500 msubvrs 33501 |
Copyright terms: Public domain | W3C validator |