![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhval | Structured version Visualization version GIF version |
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhval | ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6446 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑌‘𝑣) = (𝑌‘𝑋)) | |
2 | s1eq 13690 | . . 3 ⊢ (𝑣 = 𝑋 → 〈“𝑣”〉 = 〈“𝑋”〉) | |
3 | 1, 2 | opeq12d 4644 | . 2 ⊢ (𝑣 = 𝑋 → 〈(𝑌‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
4 | mvhfval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
5 | mvhfval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
6 | mvhfval.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
7 | 4, 5, 6 | mvhfval 32029 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
8 | opex 5164 | . 2 ⊢ 〈(𝑌‘𝑋), 〈“𝑋”〉〉 ∈ V | |
9 | 3, 7, 8 | fvmpt 6542 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 〈cop 4403 ‘cfv 6135 〈“cs1 13685 mVRcmvar 31957 mTypecmty 31958 mVHcmvh 31968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-s1 13686 df-mvh 31988 |
This theorem is referenced by: mvhf1 32055 msubvrs 32056 |
Copyright terms: Public domain | W3C validator |