| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhval | Structured version Visualization version GIF version | ||
| Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
| mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhval | ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑌‘𝑣) = (𝑌‘𝑋)) | |
| 2 | s1eq 14572 | . . 3 ⊢ (𝑣 = 𝑋 → 〈“𝑣”〉 = 〈“𝑋”〉) | |
| 3 | 1, 2 | opeq12d 4848 | . 2 ⊢ (𝑣 = 𝑋 → 〈(𝑌‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| 4 | mvhfval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
| 5 | mvhfval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
| 6 | mvhfval.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
| 7 | 4, 5, 6 | mvhfval 35527 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| 8 | opex 5427 | . 2 ⊢ 〈(𝑌‘𝑋), 〈“𝑋”〉〉 ∈ V | |
| 9 | 3, 7, 8 | fvmpt 6971 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 〈“cs1 14567 mVRcmvar 35455 mTypecmty 35456 mVHcmvh 35466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-s1 14568 df-mvh 35486 |
| This theorem is referenced by: mvhf1 35553 msubvrs 35554 |
| Copyright terms: Public domain | W3C validator |