Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhval Structured version   Visualization version   GIF version

Theorem mvhval 33545
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhval (𝑋𝑉 → (𝐻𝑋) = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)

Proof of Theorem mvhval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6804 . . 3 (𝑣 = 𝑋 → (𝑌𝑣) = (𝑌𝑋))
2 s1eq 14354 . . 3 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
31, 2opeq12d 4817 . 2 (𝑣 = 𝑋 → ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)
4 mvhfval.v . . 3 𝑉 = (mVR‘𝑇)
5 mvhfval.y . . 3 𝑌 = (mType‘𝑇)
6 mvhfval.h . . 3 𝐻 = (mVH‘𝑇)
74, 5, 6mvhfval 33544 . 2 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
8 opex 5392 . 2 ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩ ∈ V
93, 7, 8fvmpt 6907 1 (𝑋𝑉 → (𝐻𝑋) = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cop 4571  cfv 6458  ⟨“cs1 14349  mVRcmvar 33472  mTypecmty 33473  mVHcmvh 33483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-s1 14350  df-mvh 33503
This theorem is referenced by:  mvhf1  33570  msubvrs  33571
  Copyright terms: Public domain W3C validator