| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhval | Structured version Visualization version GIF version | ||
| Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
| mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhval | ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . 3 ⊢ (𝑣 = 𝑋 → (𝑌‘𝑣) = (𝑌‘𝑋)) | |
| 2 | s1eq 14565 | . . 3 ⊢ (𝑣 = 𝑋 → 〈“𝑣”〉 = 〈“𝑋”〉) | |
| 3 | 1, 2 | opeq12d 4845 | . 2 ⊢ (𝑣 = 𝑋 → 〈(𝑌‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| 4 | mvhfval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
| 5 | mvhfval.y | . . 3 ⊢ 𝑌 = (mType‘𝑇) | |
| 6 | mvhfval.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
| 7 | 4, 5, 6 | mvhfval 35520 | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| 8 | opex 5424 | . 2 ⊢ 〈(𝑌‘𝑋), 〈“𝑋”〉〉 ∈ V | |
| 9 | 3, 7, 8 | fvmpt 6968 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 ‘cfv 6511 〈“cs1 14560 mVRcmvar 35448 mTypecmty 35449 mVHcmvh 35459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-s1 14561 df-mvh 35479 |
| This theorem is referenced by: mvhf1 35546 msubvrs 35547 |
| Copyright terms: Public domain | W3C validator |