Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhval Structured version   Visualization version   GIF version

Theorem mvhval 35517
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhval (𝑋𝑉 → (𝐻𝑋) = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)

Proof of Theorem mvhval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑣 = 𝑋 → (𝑌𝑣) = (𝑌𝑋))
2 s1eq 14507 . . 3 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
31, 2opeq12d 4832 . 2 (𝑣 = 𝑋 → ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)
4 mvhfval.v . . 3 𝑉 = (mVR‘𝑇)
5 mvhfval.y . . 3 𝑌 = (mType‘𝑇)
6 mvhfval.h . . 3 𝐻 = (mVH‘𝑇)
74, 5, 6mvhfval 35516 . 2 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
8 opex 5407 . 2 ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩ ∈ V
93, 7, 8fvmpt 6930 1 (𝑋𝑉 → (𝐻𝑋) = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4583  cfv 6482  ⟨“cs1 14502  mVRcmvar 35444  mTypecmty 35445  mVHcmvh 35455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-s1 14503  df-mvh 35475
This theorem is referenced by:  mvhf1  35542  msubvrs  35543
  Copyright terms: Public domain W3C validator