Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhval Structured version   Visualization version   GIF version

Theorem mvhval 35518
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhval (𝑋𝑉 → (𝐻𝑋) = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)

Proof of Theorem mvhval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . 3 (𝑣 = 𝑋 → (𝑌𝑣) = (𝑌𝑋))
2 s1eq 14634 . . 3 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
31, 2opeq12d 4885 . 2 (𝑣 = 𝑋 → ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)
4 mvhfval.v . . 3 𝑉 = (mVR‘𝑇)
5 mvhfval.y . . 3 𝑌 = (mType‘𝑇)
6 mvhfval.h . . 3 𝐻 = (mVH‘𝑇)
74, 5, 6mvhfval 35517 . 2 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
8 opex 5474 . 2 ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩ ∈ V
93, 7, 8fvmpt 7015 1 (𝑋𝑉 → (𝐻𝑋) = ⟨(𝑌𝑋), ⟨“𝑋”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cop 4636  cfv 6562  ⟨“cs1 14629  mVRcmvar 35445  mTypecmty 35446  mVHcmvh 35456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-s1 14630  df-mvh 35476
This theorem is referenced by:  mvhf1  35543  msubvrs  35544
  Copyright terms: Public domain W3C validator