MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl1s1 Structured version   Visualization version   GIF version

Theorem wrdl1s1 13817
Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdl1s1 (𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))

Proof of Theorem wrdl1s1
StepHypRef Expression
1 s1cl 13805 . . . 4 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
2 s1len 13809 . . . . 5 (♯‘⟨“𝑆”⟩) = 1
32a1i 11 . . . 4 (𝑆𝑉 → (♯‘⟨“𝑆”⟩) = 1)
4 s1fv 13813 . . . 4 (𝑆𝑉 → (⟨“𝑆”⟩‘0) = 𝑆)
51, 3, 43jca 1121 . . 3 (𝑆𝑉 → (⟨“𝑆”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑆”⟩) = 1 ∧ (⟨“𝑆”⟩‘0) = 𝑆))
6 eleq1 2870 . . . 4 (𝑊 = ⟨“𝑆”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑆”⟩ ∈ Word 𝑉))
7 fveqeq2 6552 . . . 4 (𝑊 = ⟨“𝑆”⟩ → ((♯‘𝑊) = 1 ↔ (♯‘⟨“𝑆”⟩) = 1))
8 fveq1 6542 . . . . 5 (𝑊 = ⟨“𝑆”⟩ → (𝑊‘0) = (⟨“𝑆”⟩‘0))
98eqeq1d 2797 . . . 4 (𝑊 = ⟨“𝑆”⟩ → ((𝑊‘0) = 𝑆 ↔ (⟨“𝑆”⟩‘0) = 𝑆))
106, 7, 93anbi123d 1428 . . 3 (𝑊 = ⟨“𝑆”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) ↔ (⟨“𝑆”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑆”⟩) = 1 ∧ (⟨“𝑆”⟩‘0) = 𝑆)))
115, 10syl5ibrcom 248 . 2 (𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))
12 eqs1 13815 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
13 s1eq 13803 . . . . 5 ((𝑊‘0) = 𝑆 → ⟨“(𝑊‘0)”⟩ = ⟨“𝑆”⟩)
1413eqeq2d 2805 . . . 4 ((𝑊‘0) = 𝑆 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ 𝑊 = ⟨“𝑆”⟩))
1512, 14syl5ibcom 246 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ((𝑊‘0) = 𝑆𝑊 = ⟨“𝑆”⟩))
16153impia 1110 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) → 𝑊 = ⟨“𝑆”⟩)
1711, 16impbid1 226 1 (𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  cfv 6230  0cc0 10388  1c1 10389  chash 13545  Word cword 13712  ⟨“cs1 13798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-n0 11751  df-z 11835  df-uz 12099  df-fz 12748  df-fzo 12889  df-hash 13546  df-word 13713  df-s1 13799
This theorem is referenced by:  rusgrnumwwlkb0  27442  clwwlknon1  27568
  Copyright terms: Public domain W3C validator