Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdl1s1 | Structured version Visualization version GIF version |
Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
Ref | Expression |
---|---|
wrdl1s1 | ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 14235 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
2 | s1len 14239 | . . . . 5 ⊢ (♯‘〈“𝑆”〉) = 1 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (♯‘〈“𝑆”〉) = 1) |
4 | s1fv 14243 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
5 | 1, 3, 4 | 3jca 1126 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉 ∈ Word 𝑉 ∧ (♯‘〈“𝑆”〉) = 1 ∧ (〈“𝑆”〉‘0) = 𝑆)) |
6 | eleq1 2826 | . . . 4 ⊢ (𝑊 = 〈“𝑆”〉 → (𝑊 ∈ Word 𝑉 ↔ 〈“𝑆”〉 ∈ Word 𝑉)) | |
7 | fveqeq2 6765 | . . . 4 ⊢ (𝑊 = 〈“𝑆”〉 → ((♯‘𝑊) = 1 ↔ (♯‘〈“𝑆”〉) = 1)) | |
8 | fveq1 6755 | . . . . 5 ⊢ (𝑊 = 〈“𝑆”〉 → (𝑊‘0) = (〈“𝑆”〉‘0)) | |
9 | 8 | eqeq1d 2740 | . . . 4 ⊢ (𝑊 = 〈“𝑆”〉 → ((𝑊‘0) = 𝑆 ↔ (〈“𝑆”〉‘0) = 𝑆)) |
10 | 6, 7, 9 | 3anbi123d 1434 | . . 3 ⊢ (𝑊 = 〈“𝑆”〉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) ↔ (〈“𝑆”〉 ∈ Word 𝑉 ∧ (♯‘〈“𝑆”〉) = 1 ∧ (〈“𝑆”〉‘0) = 𝑆))) |
11 | 5, 10 | syl5ibrcom 246 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
12 | eqs1 14245 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) | |
13 | s1eq 14233 | . . . . 5 ⊢ ((𝑊‘0) = 𝑆 → 〈“(𝑊‘0)”〉 = 〈“𝑆”〉) | |
14 | 13 | eqeq2d 2749 | . . . 4 ⊢ ((𝑊‘0) = 𝑆 → (𝑊 = 〈“(𝑊‘0)”〉 ↔ 𝑊 = 〈“𝑆”〉)) |
15 | 12, 14 | syl5ibcom 244 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ((𝑊‘0) = 𝑆 → 𝑊 = 〈“𝑆”〉)) |
16 | 15 | 3impia 1115 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) → 𝑊 = 〈“𝑆”〉) |
17 | 11, 16 | impbid1 224 | 1 ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 0cc0 10802 1c1 10803 ♯chash 13972 Word cword 14145 〈“cs1 14228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-s1 14229 |
This theorem is referenced by: rusgrnumwwlkb0 28237 clwwlknon1 28362 |
Copyright terms: Public domain | W3C validator |