Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrdl1s1 | Structured version Visualization version GIF version |
Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
Ref | Expression |
---|---|
wrdl1s1 | ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 14159 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → 〈“𝑆”〉 ∈ Word 𝑉) | |
2 | s1len 14163 | . . . . 5 ⊢ (♯‘〈“𝑆”〉) = 1 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (♯‘〈“𝑆”〉) = 1) |
4 | s1fv 14167 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉‘0) = 𝑆) | |
5 | 1, 3, 4 | 3jca 1130 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (〈“𝑆”〉 ∈ Word 𝑉 ∧ (♯‘〈“𝑆”〉) = 1 ∧ (〈“𝑆”〉‘0) = 𝑆)) |
6 | eleq1 2825 | . . . 4 ⊢ (𝑊 = 〈“𝑆”〉 → (𝑊 ∈ Word 𝑉 ↔ 〈“𝑆”〉 ∈ Word 𝑉)) | |
7 | fveqeq2 6726 | . . . 4 ⊢ (𝑊 = 〈“𝑆”〉 → ((♯‘𝑊) = 1 ↔ (♯‘〈“𝑆”〉) = 1)) | |
8 | fveq1 6716 | . . . . 5 ⊢ (𝑊 = 〈“𝑆”〉 → (𝑊‘0) = (〈“𝑆”〉‘0)) | |
9 | 8 | eqeq1d 2739 | . . . 4 ⊢ (𝑊 = 〈“𝑆”〉 → ((𝑊‘0) = 𝑆 ↔ (〈“𝑆”〉‘0) = 𝑆)) |
10 | 6, 7, 9 | 3anbi123d 1438 | . . 3 ⊢ (𝑊 = 〈“𝑆”〉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) ↔ (〈“𝑆”〉 ∈ Word 𝑉 ∧ (♯‘〈“𝑆”〉) = 1 ∧ (〈“𝑆”〉‘0) = 𝑆))) |
11 | 5, 10 | syl5ibrcom 250 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
12 | eqs1 14169 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) | |
13 | s1eq 14157 | . . . . 5 ⊢ ((𝑊‘0) = 𝑆 → 〈“(𝑊‘0)”〉 = 〈“𝑆”〉) | |
14 | 13 | eqeq2d 2748 | . . . 4 ⊢ ((𝑊‘0) = 𝑆 → (𝑊 = 〈“(𝑊‘0)”〉 ↔ 𝑊 = 〈“𝑆”〉)) |
15 | 12, 14 | syl5ibcom 248 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ((𝑊‘0) = 𝑆 → 𝑊 = 〈“𝑆”〉)) |
16 | 15 | 3impia 1119 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) → 𝑊 = 〈“𝑆”〉) |
17 | 11, 16 | impbid1 228 | 1 ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 0cc0 10729 1c1 10730 ♯chash 13896 Word cword 14069 〈“cs1 14152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-s1 14153 |
This theorem is referenced by: rusgrnumwwlkb0 28055 clwwlknon1 28180 |
Copyright terms: Public domain | W3C validator |