MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdl1s1 Structured version   Visualization version   GIF version

Theorem wrdl1s1 14524
Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdl1s1 (𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))

Proof of Theorem wrdl1s1
StepHypRef Expression
1 s1cl 14512 . . . 4 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
2 s1len 14516 . . . . 5 (♯‘⟨“𝑆”⟩) = 1
32a1i 11 . . . 4 (𝑆𝑉 → (♯‘⟨“𝑆”⟩) = 1)
4 s1fv 14520 . . . 4 (𝑆𝑉 → (⟨“𝑆”⟩‘0) = 𝑆)
51, 3, 43jca 1128 . . 3 (𝑆𝑉 → (⟨“𝑆”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑆”⟩) = 1 ∧ (⟨“𝑆”⟩‘0) = 𝑆))
6 eleq1 2821 . . . 4 (𝑊 = ⟨“𝑆”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑆”⟩ ∈ Word 𝑉))
7 fveqeq2 6837 . . . 4 (𝑊 = ⟨“𝑆”⟩ → ((♯‘𝑊) = 1 ↔ (♯‘⟨“𝑆”⟩) = 1))
8 fveq1 6827 . . . . 5 (𝑊 = ⟨“𝑆”⟩ → (𝑊‘0) = (⟨“𝑆”⟩‘0))
98eqeq1d 2735 . . . 4 (𝑊 = ⟨“𝑆”⟩ → ((𝑊‘0) = 𝑆 ↔ (⟨“𝑆”⟩‘0) = 𝑆))
106, 7, 93anbi123d 1438 . . 3 (𝑊 = ⟨“𝑆”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) ↔ (⟨“𝑆”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑆”⟩) = 1 ∧ (⟨“𝑆”⟩‘0) = 𝑆)))
115, 10syl5ibrcom 247 . 2 (𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))
12 eqs1 14522 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
13 s1eq 14510 . . . . 5 ((𝑊‘0) = 𝑆 → ⟨“(𝑊‘0)”⟩ = ⟨“𝑆”⟩)
1413eqeq2d 2744 . . . 4 ((𝑊‘0) = 𝑆 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ 𝑊 = ⟨“𝑆”⟩))
1512, 14syl5ibcom 245 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ((𝑊‘0) = 𝑆𝑊 = ⟨“𝑆”⟩))
16153impia 1117 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) → 𝑊 = ⟨“𝑆”⟩)
1711, 16impbid1 225 1 (𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  0cc0 11013  1c1 11014  chash 14239  Word cword 14422  ⟨“cs1 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-s1 14506
This theorem is referenced by:  rusgrnumwwlkb0  29954  clwwlknon1  30079
  Copyright terms: Public domain W3C validator