![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdl1s1 | Structured version Visualization version GIF version |
Description: A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
Ref | Expression |
---|---|
wrdl1s1 | ⊢ (𝑆 ∈ 𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 14555 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉) | |
2 | s1len 14559 | . . . . 5 ⊢ (♯‘⟨“𝑆”⟩) = 1 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (♯‘⟨“𝑆”⟩) = 1) |
4 | s1fv 14563 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → (⟨“𝑆”⟩‘0) = 𝑆) | |
5 | 1, 3, 4 | 3jca 1125 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (⟨“𝑆”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑆”⟩) = 1 ∧ (⟨“𝑆”⟩‘0) = 𝑆)) |
6 | eleq1 2815 | . . . 4 ⊢ (𝑊 = ⟨“𝑆”⟩ → (𝑊 ∈ Word 𝑉 ↔ ⟨“𝑆”⟩ ∈ Word 𝑉)) | |
7 | fveqeq2 6893 | . . . 4 ⊢ (𝑊 = ⟨“𝑆”⟩ → ((♯‘𝑊) = 1 ↔ (♯‘⟨“𝑆”⟩) = 1)) | |
8 | fveq1 6883 | . . . . 5 ⊢ (𝑊 = ⟨“𝑆”⟩ → (𝑊‘0) = (⟨“𝑆”⟩‘0)) | |
9 | 8 | eqeq1d 2728 | . . . 4 ⊢ (𝑊 = ⟨“𝑆”⟩ → ((𝑊‘0) = 𝑆 ↔ (⟨“𝑆”⟩‘0) = 𝑆)) |
10 | 6, 7, 9 | 3anbi123d 1432 | . . 3 ⊢ (𝑊 = ⟨“𝑆”⟩ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) ↔ (⟨“𝑆”⟩ ∈ Word 𝑉 ∧ (♯‘⟨“𝑆”⟩) = 1 ∧ (⟨“𝑆”⟩‘0) = 𝑆))) |
11 | 5, 10 | syl5ibrcom 246 | . 2 ⊢ (𝑆 ∈ 𝑉 → (𝑊 = ⟨“𝑆”⟩ → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
12 | eqs1 14565 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩) | |
13 | s1eq 14553 | . . . . 5 ⊢ ((𝑊‘0) = 𝑆 → ⟨“(𝑊‘0)”⟩ = ⟨“𝑆”⟩) | |
14 | 13 | eqeq2d 2737 | . . . 4 ⊢ ((𝑊‘0) = 𝑆 → (𝑊 = ⟨“(𝑊‘0)”⟩ ↔ 𝑊 = ⟨“𝑆”⟩)) |
15 | 12, 14 | syl5ibcom 244 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ((𝑊‘0) = 𝑆 → 𝑊 = ⟨“𝑆”⟩)) |
16 | 15 | 3impia 1114 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆) → 𝑊 = ⟨“𝑆”⟩) |
17 | 11, 16 | impbid1 224 | 1 ⊢ (𝑆 ∈ 𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6536 0cc0 11109 1c1 11110 ♯chash 14292 Word cword 14467 ⟨“cs1 14548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-hash 14293 df-word 14468 df-s1 14549 |
This theorem is referenced by: rusgrnumwwlkb0 29729 clwwlknon1 29854 |
Copyright terms: Public domain | W3C validator |