Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubvrs Structured version   Visualization version   GIF version

Theorem mrsubvrs 32882
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
mrsubvrs.v 𝑉 = (mVR‘𝑇)
mrsubvrs.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubvrs ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem mrsubvrs
Dummy variables 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4249 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubco.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6639 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 143 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2798 . . . . . 6 (mCN‘𝑇) = (mCN‘𝑇)
6 mrsubvrs.v . . . . . 6 𝑉 = (mVR‘𝑇)
7 mrsubvrs.r . . . . . 6 𝑅 = (mREx‘𝑇)
85, 6, 7mrexval 32861 . . . . 5 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
94, 8syl 17 . . . 4 (𝐹 ∈ ran 𝑆𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
109eleq2d 2875 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋𝑅𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉)))
11 fveq2 6645 . . . . . . . . 9 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
1211rneqd 5772 . . . . . . . 8 (𝑣 = ∅ → ran (𝐹𝑣) = ran (𝐹‘∅))
1312ineq1d 4138 . . . . . . 7 (𝑣 = ∅ → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘∅) ∩ 𝑉))
14 rneq 5770 . . . . . . . . . . . 12 (𝑣 = ∅ → ran 𝑣 = ran ∅)
15 rn0 5760 . . . . . . . . . . . 12 ran ∅ = ∅
1614, 15eqtrdi 2849 . . . . . . . . . . 11 (𝑣 = ∅ → ran 𝑣 = ∅)
1716ineq1d 4138 . . . . . . . . . 10 (𝑣 = ∅ → (ran 𝑣𝑉) = (∅ ∩ 𝑉))
18 0in 4301 . . . . . . . . . 10 (∅ ∩ 𝑉) = ∅
1917, 18eqtrdi 2849 . . . . . . . . 9 (𝑣 = ∅ → (ran 𝑣𝑉) = ∅)
2019iuneq1d 4908 . . . . . . . 8 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
21 0iun 4949 . . . . . . . 8 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅
2220, 21eqtrdi 2849 . . . . . . 7 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅)
2313, 22eqeq12d 2814 . . . . . 6 (𝑣 = ∅ → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘∅) ∩ 𝑉) = ∅))
2423imbi2d 344 . . . . 5 (𝑣 = ∅ → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)))
25 fveq2 6645 . . . . . . . . 9 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
2625rneqd 5772 . . . . . . . 8 (𝑣 = 𝑦 → ran (𝐹𝑣) = ran (𝐹𝑦))
2726ineq1d 4138 . . . . . . 7 (𝑣 = 𝑦 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑦) ∩ 𝑉))
28 rneq 5770 . . . . . . . . 9 (𝑣 = 𝑦 → ran 𝑣 = ran 𝑦)
2928ineq1d 4138 . . . . . . . 8 (𝑣 = 𝑦 → (ran 𝑣𝑉) = (ran 𝑦𝑉))
3029iuneq1d 4908 . . . . . . 7 (𝑣 = 𝑦 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
3127, 30eqeq12d 2814 . . . . . 6 (𝑣 = 𝑦 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
3231imbi2d 344 . . . . 5 (𝑣 = 𝑦 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
33 fveq2 6645 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (𝐹𝑣) = (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3433rneqd 5772 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran (𝐹𝑣) = ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3534ineq1d 4138 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉))
36 rneq 5770 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran 𝑣 = ran (𝑦 ++ ⟨“𝑧”⟩))
3736ineq1d 4138 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran 𝑣𝑉) = (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉))
3837iuneq1d 4908 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
3935, 38eqeq12d 2814 . . . . . 6 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
4039imbi2d 344 . . . . 5 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
41 fveq2 6645 . . . . . . . . 9 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
4241rneqd 5772 . . . . . . . 8 (𝑣 = 𝑋 → ran (𝐹𝑣) = ran (𝐹𝑋))
4342ineq1d 4138 . . . . . . 7 (𝑣 = 𝑋 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑋) ∩ 𝑉))
44 rneq 5770 . . . . . . . . 9 (𝑣 = 𝑋 → ran 𝑣 = ran 𝑋)
4544ineq1d 4138 . . . . . . . 8 (𝑣 = 𝑋 → (ran 𝑣𝑉) = (ran 𝑋𝑉))
4645iuneq1d 4908 . . . . . . 7 (𝑣 = 𝑋 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
4743, 46eqeq12d 2814 . . . . . 6 (𝑣 = 𝑋 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
4847imbi2d 344 . . . . 5 (𝑣 = 𝑋 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
492mrsub0 32876 . . . . . . . . 9 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
5049rneqd 5772 . . . . . . . 8 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ran ∅)
5150, 15eqtrdi 2849 . . . . . . 7 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ∅)
5251ineq1d 4138 . . . . . 6 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = (∅ ∩ 𝑉))
5352, 18eqtrdi 2849 . . . . 5 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)
54 uneq1 4083 . . . . . . . 8 ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
55 simpl 486 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹 ∈ ran 𝑆)
56 simprl 770 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
579adantr 484 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
5856, 57eleqtrrd 2893 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦𝑅)
59 simprr 772 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))
6059s1cld 13948 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6160, 57eleqtrrd 2893 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ 𝑅)
622, 7mrsubccat 32878 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆𝑦𝑅 ∧ ⟨“𝑧”⟩ ∈ 𝑅) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6355, 58, 61, 62syl3anc 1368 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6463rneqd 5772 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
652, 7mrsubf 32877 . . . . . . . . . . . . . . . 16 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
6665adantr 484 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹:𝑅𝑅)
6766, 58ffvelrnd 6829 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ 𝑅)
6867, 57eleqtrd 2892 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6966, 61ffvelrnd 6829 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ 𝑅)
7069, 57eleqtrd 2892 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
71 ccatrn 13934 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7268, 70, 71syl2anc 587 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7364, 72eqtrd 2833 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7473ineq1d 4138 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉))
75 indir 4202 . . . . . . . . . 10 ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
7674, 75eqtrdi 2849 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
77 ccatrn 13934 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
7856, 60, 77syl2anc 587 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
79 s1rn 13944 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
8079ad2antll 728 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ⟨“𝑧”⟩ = {𝑧})
8180uneq2d 4090 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran 𝑦 ∪ ran ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8278, 81eqtrd 2833 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8382ineq1d 4138 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉))
84 indir 4202 . . . . . . . . . . . . 13 ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))
8583, 84eqtrdi 2849 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉)))
8685iuneq1d 4908 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
87 iunxun 4979 . . . . . . . . . . 11 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
8886, 87eqtrdi 2849 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
89 simpr 488 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑧𝑉)
9089snssd 4702 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → {𝑧} ⊆ 𝑉)
91 df-ss 3898 . . . . . . . . . . . . . . 15 ({𝑧} ⊆ 𝑉 ↔ ({𝑧} ∩ 𝑉) = {𝑧})
9290, 91sylib 221 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = {𝑧})
9392iuneq1d 4908 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
94 vex 3444 . . . . . . . . . . . . . 14 𝑧 ∈ V
95 s1eq 13945 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ⟨“𝑥”⟩ = ⟨“𝑧”⟩)
9695fveq2d 6649 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹‘⟨“𝑥”⟩) = (𝐹‘⟨“𝑧”⟩))
9796rneqd 5772 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ran (𝐹‘⟨“𝑥”⟩) = ran (𝐹‘⟨“𝑧”⟩))
9897ineq1d 4138 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
9994, 98iunxsn 4976 . . . . . . . . . . . . 13 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)
10093, 99eqtrdi 2849 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
101 incom 4128 . . . . . . . . . . . . . . 15 ({𝑧} ∩ 𝑉) = (𝑉 ∩ {𝑧})
102 simpr 488 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ¬ 𝑧𝑉)
103 disjsn 4607 . . . . . . . . . . . . . . . 16 ((𝑉 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑉)
104102, 103sylibr 237 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝑉 ∩ {𝑧}) = ∅)
105101, 104syl5eq 2845 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = ∅)
106105iuneq1d 4908 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
10755adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝐹 ∈ ran 𝑆)
108 eldif 3891 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) ↔ (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉))
109108biimpri 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
11059, 109sylan 583 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
111 difun2 4387 . . . . . . . . . . . . . . . . . . 19 (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) = ((mCN‘𝑇) ∖ 𝑉)
112110, 111eleqtrdi 2900 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉))
1132, 7, 6, 5mrsubcn 32879 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ran 𝑆𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉)) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
114107, 112, 113syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
115114rneqd 5772 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = ran ⟨“𝑧”⟩)
11680adantr 484 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
117115, 116eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = {𝑧})
118117ineq1d 4138 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ({𝑧} ∩ 𝑉))
119118, 105eqtrd 2833 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ∅)
12021, 106, 1193eqtr4a 2859 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
121100, 120pm2.61dan 812 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
122121uneq2d 4090 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12388, 122eqtrd 2833 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12476, 123eqeq12d 2814 . . . . . . . 8 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))))
12554, 124syl5ibr 249 . . . . . . 7 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
126125expcom 417 . . . . . 6 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → (𝐹 ∈ ran 𝑆 → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
127126a2d 29 . . . . 5 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) → (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
12824, 32, 40, 48, 53, 127wrdind 14075 . . . 4 (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
129128com12 32 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
13010, 129sylbid 243 . 2 (𝐹 ∈ ran 𝑆 → (𝑋𝑅 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
131130imp 410 1 ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   ciun 4881  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940  mCNcmcn 32820  mVRcmvar 32821  mRExcmrex 32826  mRSubstcmrsub 32830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-frmd 18006  df-mrex 32846  df-mrsub 32850
This theorem is referenced by:  msubvrs  32920
  Copyright terms: Public domain W3C validator