Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubvrs Structured version   Visualization version   GIF version

Theorem mrsubvrs 33384
Description: The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
mrsubvrs.v 𝑉 = (mVR‘𝑇)
mrsubvrs.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubvrs ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑇   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem mrsubvrs
Dummy variables 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4264 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubco.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6750 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 141 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2738 . . . . . 6 (mCN‘𝑇) = (mCN‘𝑇)
6 mrsubvrs.v . . . . . 6 𝑉 = (mVR‘𝑇)
7 mrsubvrs.r . . . . . 6 𝑅 = (mREx‘𝑇)
85, 6, 7mrexval 33363 . . . . 5 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
94, 8syl 17 . . . 4 (𝐹 ∈ ran 𝑆𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
109eleq2d 2824 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋𝑅𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉)))
11 fveq2 6756 . . . . . . . . 9 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
1211rneqd 5836 . . . . . . . 8 (𝑣 = ∅ → ran (𝐹𝑣) = ran (𝐹‘∅))
1312ineq1d 4142 . . . . . . 7 (𝑣 = ∅ → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘∅) ∩ 𝑉))
14 rneq 5834 . . . . . . . . . . . 12 (𝑣 = ∅ → ran 𝑣 = ran ∅)
15 rn0 5824 . . . . . . . . . . . 12 ran ∅ = ∅
1614, 15eqtrdi 2795 . . . . . . . . . . 11 (𝑣 = ∅ → ran 𝑣 = ∅)
1716ineq1d 4142 . . . . . . . . . 10 (𝑣 = ∅ → (ran 𝑣𝑉) = (∅ ∩ 𝑉))
18 0in 4324 . . . . . . . . . 10 (∅ ∩ 𝑉) = ∅
1917, 18eqtrdi 2795 . . . . . . . . 9 (𝑣 = ∅ → (ran 𝑣𝑉) = ∅)
2019iuneq1d 4948 . . . . . . . 8 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
21 0iun 4988 . . . . . . . 8 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅
2220, 21eqtrdi 2795 . . . . . . 7 (𝑣 = ∅ → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ∅)
2313, 22eqeq12d 2754 . . . . . 6 (𝑣 = ∅ → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘∅) ∩ 𝑉) = ∅))
2423imbi2d 340 . . . . 5 (𝑣 = ∅ → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)))
25 fveq2 6756 . . . . . . . . 9 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
2625rneqd 5836 . . . . . . . 8 (𝑣 = 𝑦 → ran (𝐹𝑣) = ran (𝐹𝑦))
2726ineq1d 4142 . . . . . . 7 (𝑣 = 𝑦 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑦) ∩ 𝑉))
28 rneq 5834 . . . . . . . . 9 (𝑣 = 𝑦 → ran 𝑣 = ran 𝑦)
2928ineq1d 4142 . . . . . . . 8 (𝑣 = 𝑦 → (ran 𝑣𝑉) = (ran 𝑦𝑉))
3029iuneq1d 4948 . . . . . . 7 (𝑣 = 𝑦 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
3127, 30eqeq12d 2754 . . . . . 6 (𝑣 = 𝑦 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
3231imbi2d 340 . . . . 5 (𝑣 = 𝑦 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
33 fveq2 6756 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (𝐹𝑣) = (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3433rneqd 5836 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran (𝐹𝑣) = ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)))
3534ineq1d 4142 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉))
36 rneq 5834 . . . . . . . . 9 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ran 𝑣 = ran (𝑦 ++ ⟨“𝑧”⟩))
3736ineq1d 4142 . . . . . . . 8 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → (ran 𝑣𝑉) = (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉))
3837iuneq1d 4948 . . . . . . 7 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
3935, 38eqeq12d 2754 . . . . . 6 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
4039imbi2d 340 . . . . 5 (𝑣 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
41 fveq2 6756 . . . . . . . . 9 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
4241rneqd 5836 . . . . . . . 8 (𝑣 = 𝑋 → ran (𝐹𝑣) = ran (𝐹𝑋))
4342ineq1d 4142 . . . . . . 7 (𝑣 = 𝑋 → (ran (𝐹𝑣) ∩ 𝑉) = (ran (𝐹𝑋) ∩ 𝑉))
44 rneq 5834 . . . . . . . . 9 (𝑣 = 𝑋 → ran 𝑣 = ran 𝑋)
4544ineq1d 4142 . . . . . . . 8 (𝑣 = 𝑋 → (ran 𝑣𝑉) = (ran 𝑋𝑉))
4645iuneq1d 4948 . . . . . . 7 (𝑣 = 𝑋 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
4743, 46eqeq12d 2754 . . . . . 6 (𝑣 = 𝑋 → ((ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
4847imbi2d 340 . . . . 5 (𝑣 = 𝑋 → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑣) ∩ 𝑉) = 𝑥 ∈ (ran 𝑣𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) ↔ (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
492mrsub0 33378 . . . . . . . . 9 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
5049rneqd 5836 . . . . . . . 8 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ran ∅)
5150, 15eqtrdi 2795 . . . . . . 7 (𝐹 ∈ ran 𝑆 → ran (𝐹‘∅) = ∅)
5251ineq1d 4142 . . . . . 6 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = (∅ ∩ 𝑉))
5352, 18eqtrdi 2795 . . . . 5 (𝐹 ∈ ran 𝑆 → (ran (𝐹‘∅) ∩ 𝑉) = ∅)
54 uneq1 4086 . . . . . . . 8 ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
55 simpl 482 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹 ∈ ran 𝑆)
56 simprl 767 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
579adantr 480 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
5856, 57eleqtrrd 2842 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑦𝑅)
59 simprr 769 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))
6059s1cld 14236 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6160, 57eleqtrrd 2842 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ⟨“𝑧”⟩ ∈ 𝑅)
622, 7mrsubccat 33380 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆𝑦𝑅 ∧ ⟨“𝑧”⟩ ∈ 𝑅) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6355, 58, 61, 62syl3anc 1369 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
6463rneqd 5836 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)))
652, 7mrsubf 33379 . . . . . . . . . . . . . . . 16 (𝐹 ∈ ran 𝑆𝐹:𝑅𝑅)
6665adantr 480 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝐹:𝑅𝑅)
6766, 58ffvelrnd 6944 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ 𝑅)
6867, 57eleqtrd 2841 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
6966, 61ffvelrnd 6944 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ 𝑅)
7069, 57eleqtrd 2841 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
71 ccatrn 14222 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝐹‘⟨“𝑧”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7268, 70, 71syl2anc 583 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ((𝐹𝑦) ++ (𝐹‘⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7364, 72eqtrd 2778 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) = (ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)))
7473ineq1d 4142 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉))
75 indir 4206 . . . . . . . . . 10 ((ran (𝐹𝑦) ∪ ran (𝐹‘⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
7674, 75eqtrdi 2795 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
77 ccatrn 14222 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ ⟨“𝑧”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉)) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
7856, 60, 77syl2anc 583 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ ran ⟨“𝑧”⟩))
79 s1rn 14232 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
8079ad2antll 725 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran ⟨“𝑧”⟩ = {𝑧})
8180uneq2d 4093 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran 𝑦 ∪ ran ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8278, 81eqtrd 2778 . . . . . . . . . . . . . 14 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ran (𝑦 ++ ⟨“𝑧”⟩) = (ran 𝑦 ∪ {𝑧}))
8382ineq1d 4142 . . . . . . . . . . . . 13 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉))
84 indir 4206 . . . . . . . . . . . . 13 ((ran 𝑦 ∪ {𝑧}) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))
8583, 84eqtrdi 2795 . . . . . . . . . . . 12 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉) = ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉)))
8685iuneq1d 4948 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
87 iunxun 5019 . . . . . . . . . . 11 𝑥 ∈ ((ran 𝑦𝑉) ∪ ({𝑧} ∩ 𝑉))(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
8886, 87eqtrdi 2795 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
89 simpr 484 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑧𝑉)
9089snssd 4739 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → {𝑧} ⊆ 𝑉)
91 df-ss 3900 . . . . . . . . . . . . . . 15 ({𝑧} ⊆ 𝑉 ↔ ({𝑧} ∩ 𝑉) = {𝑧})
9290, 91sylib 217 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = {𝑧})
9392iuneq1d 4948 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
94 vex 3426 . . . . . . . . . . . . . 14 𝑧 ∈ V
95 s1eq 14233 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ⟨“𝑥”⟩ = ⟨“𝑧”⟩)
9695fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹‘⟨“𝑥”⟩) = (𝐹‘⟨“𝑧”⟩))
9796rneqd 5836 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ran (𝐹‘⟨“𝑥”⟩) = ran (𝐹‘⟨“𝑧”⟩))
9897ineq1d 4142 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
9994, 98iunxsn 5016 . . . . . . . . . . . . 13 𝑥 ∈ {𝑧} (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)
10093, 99eqtrdi 2795 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
101 incom 4131 . . . . . . . . . . . . . . 15 ({𝑧} ∩ 𝑉) = (𝑉 ∩ {𝑧})
102 simpr 484 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ¬ 𝑧𝑉)
103 disjsn 4644 . . . . . . . . . . . . . . . 16 ((𝑉 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑉)
104102, 103sylibr 233 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝑉 ∩ {𝑧}) = ∅)
105101, 104syl5eq 2791 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ({𝑧} ∩ 𝑉) = ∅)
106105iuneq1d 4948 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = 𝑥 ∈ ∅ (ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
10755adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝐹 ∈ ran 𝑆)
108 eldif 3893 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) ↔ (𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉))
109108biimpri 227 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
11059, 109sylan 579 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉))
111 difun2 4411 . . . . . . . . . . . . . . . . . . 19 (((mCN‘𝑇) ∪ 𝑉) ∖ 𝑉) = ((mCN‘𝑇) ∖ 𝑉)
112110, 111eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉))
1132, 7, 6, 5mrsubcn 33381 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ ran 𝑆𝑧 ∈ ((mCN‘𝑇) ∖ 𝑉)) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
114107, 112, 113syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (𝐹‘⟨“𝑧”⟩) = ⟨“𝑧”⟩)
115114rneqd 5836 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = ran ⟨“𝑧”⟩)
11680adantr 480 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran ⟨“𝑧”⟩ = {𝑧})
117115, 116eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → ran (𝐹‘⟨“𝑧”⟩) = {𝑧})
118117ineq1d 4142 . . . . . . . . . . . . . 14 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ({𝑧} ∩ 𝑉))
119118, 105eqtrd 2778 . . . . . . . . . . . . 13 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉) = ∅)
12021, 106, 1193eqtr4a 2805 . . . . . . . . . . . 12 (((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) ∧ ¬ 𝑧𝑉) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
121100, 120pm2.61dan 809 . . . . . . . . . . 11 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))
122121uneq2d 4093 . . . . . . . . . 10 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ 𝑥 ∈ ({𝑧} ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12388, 122eqtrd 2778 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)))
12476, 123eqeq12d 2754 . . . . . . . 8 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ↔ ((ran (𝐹𝑦) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉)) = ( 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) ∪ (ran (𝐹‘⟨“𝑧”⟩) ∩ 𝑉))))
12554, 124syl5ibr 245 . . . . . . 7 ((𝐹 ∈ ran 𝑆 ∧ (𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉))) → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
126125expcom 413 . . . . . 6 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → (𝐹 ∈ ran 𝑆 → ((ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉) → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
127126a2d 29 . . . . 5 ((𝑦 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ 𝑧 ∈ ((mCN‘𝑇) ∪ 𝑉)) → ((𝐹 ∈ ran 𝑆 → (ran (𝐹𝑦) ∩ 𝑉) = 𝑥 ∈ (ran 𝑦𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)) → (𝐹 ∈ ran 𝑆 → (ran (𝐹‘(𝑦 ++ ⟨“𝑧”⟩)) ∩ 𝑉) = 𝑥 ∈ (ran (𝑦 ++ ⟨“𝑧”⟩) ∩ 𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))))
12824, 32, 40, 48, 53, 127wrdind 14363 . . . 4 (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (𝐹 ∈ ran 𝑆 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
129128com12 32 . . 3 (𝐹 ∈ ran 𝑆 → (𝑋 ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
13010, 129sylbid 239 . 2 (𝐹 ∈ ran 𝑆 → (𝑋𝑅 → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉)))
131130imp 406 1 ((𝐹 ∈ ran 𝑆𝑋𝑅) → (ran (𝐹𝑋) ∩ 𝑉) = 𝑥 ∈ (ran 𝑋𝑉)(ran (𝐹‘⟨“𝑥”⟩) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   ciun 4921  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  mCNcmcn 33322  mVRcmvar 33323  mRExcmrex 33328  mRSubstcmrsub 33332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-frmd 18403  df-mrex 33348  df-mrsub 33352
This theorem is referenced by:  msubvrs  33422
  Copyright terms: Public domain W3C validator