Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubcv Structured version   Visualization version   GIF version

Theorem mrsubcv 35546
Description: The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubcv ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))

Proof of Theorem mrsubcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑋 ∈ (𝐶𝑉))
21s1cld 14506 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ Word (𝐶𝑉))
3 elun 4098 . . . . . . 7 (𝑋 ∈ (𝐶𝑉) ↔ (𝑋𝐶𝑋𝑉))
4 elfvex 6852 . . . . . . . . 9 (𝑋 ∈ (mCN‘𝑇) → 𝑇 ∈ V)
5 mrsubffval.c . . . . . . . . 9 𝐶 = (mCN‘𝑇)
64, 5eleq2s 2849 . . . . . . . 8 (𝑋𝐶𝑇 ∈ V)
7 elfvex 6852 . . . . . . . . 9 (𝑋 ∈ (mVR‘𝑇) → 𝑇 ∈ V)
8 mrsubffval.v . . . . . . . . 9 𝑉 = (mVR‘𝑇)
97, 8eleq2s 2849 . . . . . . . 8 (𝑋𝑉𝑇 ∈ V)
106, 9jaoi 857 . . . . . . 7 ((𝑋𝐶𝑋𝑉) → 𝑇 ∈ V)
113, 10sylbi 217 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → 𝑇 ∈ V)
12113ad2ant3 1135 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑇 ∈ V)
13 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
145, 8, 13mrexval 35537 . . . . 5 (𝑇 ∈ V → 𝑅 = Word (𝐶𝑉))
1512, 14syl 17 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
162, 15eleqtrrd 2834 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ 𝑅)
17 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
18 eqid 2731 . . . 4 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
195, 8, 13, 17, 18mrsubval 35545 . . 3 ((𝐹:𝐴𝑅𝐴𝑉 ∧ ⟨“𝑋”⟩ ∈ 𝑅) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
2016, 19syld3an3 1411 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
21 simpl1 1192 . . . . . . . . 9 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝐴𝑅)
2221ffvelcdmda 7012 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝑅)
2315ad2antrr 726 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → 𝑅 = Word (𝐶𝑉))
2422, 23eleqtrd 2833 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ Word (𝐶𝑉))
25 simplr 768 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → 𝑣 ∈ (𝐶𝑉))
2625s1cld 14506 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
2724, 26ifclda 4506 . . . . . 6 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
2827fmpttd 7043 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
29 s1co 14735 . . . . 5 ((𝑋 ∈ (𝐶𝑉) ∧ (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
301, 28, 29syl2anc 584 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
31 eleq1 2819 . . . . . . . 8 (𝑣 = 𝑋 → (𝑣𝐴𝑋𝐴))
32 fveq2 6817 . . . . . . . 8 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
33 s1eq 14503 . . . . . . . 8 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
3431, 32, 33ifbieq12d 4499 . . . . . . 7 (𝑣 = 𝑋 → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
35 eqid 2731 . . . . . . 7 (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
36 fvex 6830 . . . . . . . 8 (𝐹𝑋) ∈ V
37 s1cli 14508 . . . . . . . . 9 ⟨“𝑋”⟩ ∈ Word V
3837elexi 3459 . . . . . . . 8 ⟨“𝑋”⟩ ∈ V
3936, 38ifex 4521 . . . . . . 7 if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ V
4034, 35, 39fvmpt 6924 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
41403ad2ant3 1135 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
4241s1eqd 14504 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩ = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4330, 42eqtrd 2766 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4443oveq2d 7357 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)) = ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩))
4528, 1ffvelcdmd 7013 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) ∈ Word (𝐶𝑉))
4641, 45eqeltrrd 2832 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉))
475fvexi 6831 . . . . . . 7 𝐶 ∈ V
488fvexi 6831 . . . . . . 7 𝑉 ∈ V
4947, 48unex 7672 . . . . . 6 (𝐶𝑉) ∈ V
50 eqid 2731 . . . . . . 7 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
5118, 50frmdbas 18755 . . . . . 6 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
5249, 51ax-mp 5 . . . . 5 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
5352eqcomi 2740 . . . 4 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
5453gsumws1 18741 . . 3 (if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5546, 54syl 17 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5620, 44, 553eqtrd 2770 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897  ifcif 4470  cmpt 5167  ccom 5615  wf 6472  cfv 6476  (class class class)co 7341  Word cword 14415  ⟨“cs1 14498  Basecbs 17115   Σg cgsu 17339  freeMndcfrmd 18750  mCNcmcn 35496  mVRcmvar 35497  mRExcmrex 35502  mRSubstcmrsub 35506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-word 14416  df-s1 14499  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-0g 17340  df-gsum 17341  df-frmd 18752  df-mrex 35522  df-mrsub 35526
This theorem is referenced by:  mrsubvr  35547  mrsubcn  35555
  Copyright terms: Public domain W3C validator