Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubcv Structured version   Visualization version   GIF version

Theorem mrsubcv 35626
Description: The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubcv ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))

Proof of Theorem mrsubcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑋 ∈ (𝐶𝑉))
21s1cld 14518 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ Word (𝐶𝑉))
3 elun 4102 . . . . . . 7 (𝑋 ∈ (𝐶𝑉) ↔ (𝑋𝐶𝑋𝑉))
4 elfvex 6866 . . . . . . . . 9 (𝑋 ∈ (mCN‘𝑇) → 𝑇 ∈ V)
5 mrsubffval.c . . . . . . . . 9 𝐶 = (mCN‘𝑇)
64, 5eleq2s 2851 . . . . . . . 8 (𝑋𝐶𝑇 ∈ V)
7 elfvex 6866 . . . . . . . . 9 (𝑋 ∈ (mVR‘𝑇) → 𝑇 ∈ V)
8 mrsubffval.v . . . . . . . . 9 𝑉 = (mVR‘𝑇)
97, 8eleq2s 2851 . . . . . . . 8 (𝑋𝑉𝑇 ∈ V)
106, 9jaoi 857 . . . . . . 7 ((𝑋𝐶𝑋𝑉) → 𝑇 ∈ V)
113, 10sylbi 217 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → 𝑇 ∈ V)
12113ad2ant3 1135 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑇 ∈ V)
13 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
145, 8, 13mrexval 35617 . . . . 5 (𝑇 ∈ V → 𝑅 = Word (𝐶𝑉))
1512, 14syl 17 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
162, 15eleqtrrd 2836 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ 𝑅)
17 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
18 eqid 2733 . . . 4 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
195, 8, 13, 17, 18mrsubval 35625 . . 3 ((𝐹:𝐴𝑅𝐴𝑉 ∧ ⟨“𝑋”⟩ ∈ 𝑅) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
2016, 19syld3an3 1411 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
21 simpl1 1192 . . . . . . . . 9 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝐴𝑅)
2221ffvelcdmda 7026 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝑅)
2315ad2antrr 726 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → 𝑅 = Word (𝐶𝑉))
2422, 23eleqtrd 2835 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ Word (𝐶𝑉))
25 simplr 768 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → 𝑣 ∈ (𝐶𝑉))
2625s1cld 14518 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
2724, 26ifclda 4512 . . . . . 6 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
2827fmpttd 7057 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
29 s1co 14747 . . . . 5 ((𝑋 ∈ (𝐶𝑉) ∧ (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
301, 28, 29syl2anc 584 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
31 eleq1 2821 . . . . . . . 8 (𝑣 = 𝑋 → (𝑣𝐴𝑋𝐴))
32 fveq2 6831 . . . . . . . 8 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
33 s1eq 14515 . . . . . . . 8 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
3431, 32, 33ifbieq12d 4505 . . . . . . 7 (𝑣 = 𝑋 → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
35 eqid 2733 . . . . . . 7 (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
36 fvex 6844 . . . . . . . 8 (𝐹𝑋) ∈ V
37 s1cli 14520 . . . . . . . . 9 ⟨“𝑋”⟩ ∈ Word V
3837elexi 3460 . . . . . . . 8 ⟨“𝑋”⟩ ∈ V
3936, 38ifex 4527 . . . . . . 7 if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ V
4034, 35, 39fvmpt 6938 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
41403ad2ant3 1135 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
4241s1eqd 14516 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩ = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4330, 42eqtrd 2768 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4443oveq2d 7371 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)) = ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩))
4528, 1ffvelcdmd 7027 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) ∈ Word (𝐶𝑉))
4641, 45eqeltrrd 2834 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉))
475fvexi 6845 . . . . . . 7 𝐶 ∈ V
488fvexi 6845 . . . . . . 7 𝑉 ∈ V
4947, 48unex 7686 . . . . . 6 (𝐶𝑉) ∈ V
50 eqid 2733 . . . . . . 7 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
5118, 50frmdbas 18768 . . . . . 6 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
5249, 51ax-mp 5 . . . . 5 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
5352eqcomi 2742 . . . 4 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
5453gsumws1 18754 . . 3 (if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5546, 54syl 17 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5620, 44, 553eqtrd 2772 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  wss 3898  ifcif 4476  cmpt 5176  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  Word cword 14427  ⟨“cs1 14510  Basecbs 17127   Σg cgsu 17351  freeMndcfrmd 18763  mCNcmcn 35576  mVRcmvar 35577  mRExcmrex 35582  mRSubstcmrsub 35586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-word 14428  df-s1 14511  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-gsum 17353  df-frmd 18765  df-mrex 35602  df-mrsub 35606
This theorem is referenced by:  mrsubvr  35627  mrsubcn  35635
  Copyright terms: Public domain W3C validator