Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubcv Structured version   Visualization version   GIF version

Theorem mrsubcv 32759
Description: The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubcv ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))

Proof of Theorem mrsubcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp3 1134 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑋 ∈ (𝐶𝑉))
21s1cld 13959 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ Word (𝐶𝑉))
3 elun 4127 . . . . . . 7 (𝑋 ∈ (𝐶𝑉) ↔ (𝑋𝐶𝑋𝑉))
4 elfvex 6705 . . . . . . . . 9 (𝑋 ∈ (mCN‘𝑇) → 𝑇 ∈ V)
5 mrsubffval.c . . . . . . . . 9 𝐶 = (mCN‘𝑇)
64, 5eleq2s 2933 . . . . . . . 8 (𝑋𝐶𝑇 ∈ V)
7 elfvex 6705 . . . . . . . . 9 (𝑋 ∈ (mVR‘𝑇) → 𝑇 ∈ V)
8 mrsubffval.v . . . . . . . . 9 𝑉 = (mVR‘𝑇)
97, 8eleq2s 2933 . . . . . . . 8 (𝑋𝑉𝑇 ∈ V)
106, 9jaoi 853 . . . . . . 7 ((𝑋𝐶𝑋𝑉) → 𝑇 ∈ V)
113, 10sylbi 219 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → 𝑇 ∈ V)
12113ad2ant3 1131 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑇 ∈ V)
13 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
145, 8, 13mrexval 32750 . . . . 5 (𝑇 ∈ V → 𝑅 = Word (𝐶𝑉))
1512, 14syl 17 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → 𝑅 = Word (𝐶𝑉))
162, 15eleqtrrd 2918 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“𝑋”⟩ ∈ 𝑅)
17 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
18 eqid 2823 . . . 4 (freeMnd‘(𝐶𝑉)) = (freeMnd‘(𝐶𝑉))
195, 8, 13, 17, 18mrsubval 32758 . . 3 ((𝐹:𝐴𝑅𝐴𝑉 ∧ ⟨“𝑋”⟩ ∈ 𝑅) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
2016, 19syld3an3 1405 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)))
21 simpl1 1187 . . . . . . . . 9 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → 𝐹:𝐴𝑅)
2221ffvelrnda 6853 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝑅)
2315ad2antrr 724 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → 𝑅 = Word (𝐶𝑉))
2422, 23eleqtrd 2917 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ Word (𝐶𝑉))
25 simplr 767 . . . . . . . 8 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → 𝑣 ∈ (𝐶𝑉))
2625s1cld 13959 . . . . . . 7 ((((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) ∧ ¬ 𝑣𝐴) → ⟨“𝑣”⟩ ∈ Word (𝐶𝑉))
2724, 26ifclda 4503 . . . . . 6 (((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) ∧ 𝑣 ∈ (𝐶𝑉)) → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) ∈ Word (𝐶𝑉))
2827fmpttd 6881 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉))
29 s1co 14197 . . . . 5 ((𝑋 ∈ (𝐶𝑉) ∧ (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)):(𝐶𝑉)⟶Word (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
301, 28, 29syl2anc 586 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩)
31 eleq1 2902 . . . . . . . 8 (𝑣 = 𝑋 → (𝑣𝐴𝑋𝐴))
32 fveq2 6672 . . . . . . . 8 (𝑣 = 𝑋 → (𝐹𝑣) = (𝐹𝑋))
33 s1eq 13956 . . . . . . . 8 (𝑣 = 𝑋 → ⟨“𝑣”⟩ = ⟨“𝑋”⟩)
3431, 32, 33ifbieq12d 4496 . . . . . . 7 (𝑣 = 𝑋 → if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
35 eqid 2823 . . . . . . 7 (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
36 fvex 6685 . . . . . . . 8 (𝐹𝑋) ∈ V
37 s1cli 13961 . . . . . . . . 9 ⟨“𝑋”⟩ ∈ Word V
3837elexi 3515 . . . . . . . 8 ⟨“𝑋”⟩ ∈ V
3936, 38ifex 4517 . . . . . . 7 if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ V
4034, 35, 39fvmpt 6770 . . . . . 6 (𝑋 ∈ (𝐶𝑉) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
41403ad2ant3 1131 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
4241s1eqd 13957 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ⟨“((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋)”⟩ = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4330, 42eqtrd 2858 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩) = ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩)
4443oveq2d 7174 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ ⟨“𝑋”⟩)) = ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩))
4528, 1ffvelrnd 6854 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))‘𝑋) ∈ Word (𝐶𝑉))
4641, 45eqeltrrd 2916 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉))
475fvexi 6686 . . . . . . 7 𝐶 ∈ V
488fvexi 6686 . . . . . . 7 𝑉 ∈ V
4947, 48unex 7471 . . . . . 6 (𝐶𝑉) ∈ V
50 eqid 2823 . . . . . . 7 (Base‘(freeMnd‘(𝐶𝑉))) = (Base‘(freeMnd‘(𝐶𝑉)))
5118, 50frmdbas 18019 . . . . . 6 ((𝐶𝑉) ∈ V → (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉))
5249, 51ax-mp 5 . . . . 5 (Base‘(freeMnd‘(𝐶𝑉))) = Word (𝐶𝑉)
5352eqcomi 2832 . . . 4 Word (𝐶𝑉) = (Base‘(freeMnd‘(𝐶𝑉)))
5453gsumws1 18004 . . 3 (if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) ∈ Word (𝐶𝑉) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5546, 54syl 17 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((freeMnd‘(𝐶𝑉)) Σg ⟨“if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩)”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
5620, 44, 553eqtrd 2862 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ (𝐶𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cun 3936  wss 3938  ifcif 4469  cmpt 5148  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  Word cword 13864  ⟨“cs1 13951  Basecbs 16485   Σg cgsu 16716  freeMndcfrmd 18014  mCNcmcn 32709  mVRcmvar 32710  mRExcmrex 32715  mRSubstcmrsub 32719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-s1 13952  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-0g 16717  df-gsum 16718  df-frmd 18016  df-mrex 32735  df-mrsub 32739
This theorem is referenced by:  mrsubvr  32760  mrsubcn  32768
  Copyright terms: Public domain W3C validator