| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1139 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
| 2 | 1 | s1cld 14641 |
. . . 4
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → 〈“𝑋”〉 ∈ Word (𝐶 ∪ 𝑉)) |
| 3 | | elun 4153 |
. . . . . . 7
⊢ (𝑋 ∈ (𝐶 ∪ 𝑉) ↔ (𝑋 ∈ 𝐶 ∨ 𝑋 ∈ 𝑉)) |
| 4 | | elfvex 6944 |
. . . . . . . . 9
⊢ (𝑋 ∈ (mCN‘𝑇) → 𝑇 ∈ V) |
| 5 | | mrsubffval.c |
. . . . . . . . 9
⊢ 𝐶 = (mCN‘𝑇) |
| 6 | 4, 5 | eleq2s 2859 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐶 → 𝑇 ∈ V) |
| 7 | | elfvex 6944 |
. . . . . . . . 9
⊢ (𝑋 ∈ (mVR‘𝑇) → 𝑇 ∈ V) |
| 8 | | mrsubffval.v |
. . . . . . . . 9
⊢ 𝑉 = (mVR‘𝑇) |
| 9 | 7, 8 | eleq2s 2859 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → 𝑇 ∈ V) |
| 10 | 6, 9 | jaoi 858 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐶 ∨ 𝑋 ∈ 𝑉) → 𝑇 ∈ V) |
| 11 | 3, 10 | sylbi 217 |
. . . . . 6
⊢ (𝑋 ∈ (𝐶 ∪ 𝑉) → 𝑇 ∈ V) |
| 12 | 11 | 3ad2ant3 1136 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → 𝑇 ∈ V) |
| 13 | | mrsubffval.r |
. . . . . 6
⊢ 𝑅 = (mREx‘𝑇) |
| 14 | 5, 8, 13 | mrexval 35506 |
. . . . 5
⊢ (𝑇 ∈ V → 𝑅 = Word (𝐶 ∪ 𝑉)) |
| 15 | 12, 14 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → 𝑅 = Word (𝐶 ∪ 𝑉)) |
| 16 | 2, 15 | eleqtrrd 2844 |
. . 3
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → 〈“𝑋”〉 ∈ 𝑅) |
| 17 | | mrsubffval.s |
. . . 4
⊢ 𝑆 = (mRSubst‘𝑇) |
| 18 | | eqid 2737 |
. . . 4
⊢
(freeMnd‘(𝐶
∪ 𝑉)) =
(freeMnd‘(𝐶 ∪
𝑉)) |
| 19 | 5, 8, 13, 17, 18 | mrsubval 35514 |
. . 3
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 〈“𝑋”〉 ∈ 𝑅) → ((𝑆‘𝐹)‘〈“𝑋”〉) = ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 〈“𝑋”〉))) |
| 20 | 16, 19 | syld3an3 1411 |
. 2
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 〈“𝑋”〉))) |
| 21 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → 𝐹:𝐴⟶𝑅) |
| 22 | 21 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ 𝑅) |
| 23 | 15 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ 𝐴) → 𝑅 = Word (𝐶 ∪ 𝑉)) |
| 24 | 22, 23 | eleqtrd 2843 |
. . . . . . 7
⊢ ((((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ Word (𝐶 ∪ 𝑉)) |
| 25 | | simplr 769 |
. . . . . . . 8
⊢ ((((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ ¬ 𝑣 ∈ 𝐴) → 𝑣 ∈ (𝐶 ∪ 𝑉)) |
| 26 | 25 | s1cld 14641 |
. . . . . . 7
⊢ ((((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) ∧ ¬ 𝑣 ∈ 𝐴) → 〈“𝑣”〉 ∈ Word (𝐶 ∪ 𝑉)) |
| 27 | 24, 26 | ifclda 4561 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) ∧ 𝑣 ∈ (𝐶 ∪ 𝑉)) → if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉) ∈ Word (𝐶 ∪ 𝑉)) |
| 28 | 27 | fmpttd 7135 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) |
| 29 | | s1co 14872 |
. . . . 5
⊢ ((𝑋 ∈ (𝐶 ∪ 𝑉) ∧ (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)):(𝐶 ∪ 𝑉)⟶Word (𝐶 ∪ 𝑉)) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 〈“𝑋”〉) =
〈“((𝑣 ∈
(𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉))‘𝑋)”〉) |
| 30 | 1, 28, 29 | syl2anc 584 |
. . . 4
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 〈“𝑋”〉) =
〈“((𝑣 ∈
(𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉))‘𝑋)”〉) |
| 31 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑣 = 𝑋 → (𝑣 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 32 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑣 = 𝑋 → (𝐹‘𝑣) = (𝐹‘𝑋)) |
| 33 | | s1eq 14638 |
. . . . . . . 8
⊢ (𝑣 = 𝑋 → 〈“𝑣”〉 = 〈“𝑋”〉) |
| 34 | 31, 32, 33 | ifbieq12d 4554 |
. . . . . . 7
⊢ (𝑣 = 𝑋 → if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) |
| 35 | | eqid 2737 |
. . . . . . 7
⊢ (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) = (𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) |
| 36 | | fvex 6919 |
. . . . . . . 8
⊢ (𝐹‘𝑋) ∈ V |
| 37 | | s1cli 14643 |
. . . . . . . . 9
⊢
〈“𝑋”〉 ∈ Word V |
| 38 | 37 | elexi 3503 |
. . . . . . . 8
⊢
〈“𝑋”〉 ∈ V |
| 39 | 36, 38 | ifex 4576 |
. . . . . . 7
⊢ if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉) ∈ V |
| 40 | 34, 35, 39 | fvmpt 7016 |
. . . . . 6
⊢ (𝑋 ∈ (𝐶 ∪ 𝑉) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉))‘𝑋) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) |
| 41 | 40 | 3ad2ant3 1136 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉))‘𝑋) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) |
| 42 | 41 | s1eqd 14639 |
. . . 4
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → 〈“((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉))‘𝑋)”〉 = 〈“if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)”〉) |
| 43 | 30, 42 | eqtrd 2777 |
. . 3
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 〈“𝑋”〉) =
〈“if(𝑋 ∈
𝐴, (𝐹‘𝑋), 〈“𝑋”〉)”〉) |
| 44 | 43 | oveq2d 7447 |
. 2
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((freeMnd‘(𝐶 ∪ 𝑉)) Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 〈“𝑋”〉)) =
((freeMnd‘(𝐶 ∪
𝑉))
Σg 〈“if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)”〉)) |
| 45 | 28, 1 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉))‘𝑋) ∈ Word (𝐶 ∪ 𝑉)) |
| 46 | 41, 45 | eqeltrrd 2842 |
. . 3
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉) ∈ Word (𝐶 ∪ 𝑉)) |
| 47 | 5 | fvexi 6920 |
. . . . . . 7
⊢ 𝐶 ∈ V |
| 48 | 8 | fvexi 6920 |
. . . . . . 7
⊢ 𝑉 ∈ V |
| 49 | 47, 48 | unex 7764 |
. . . . . 6
⊢ (𝐶 ∪ 𝑉) ∈ V |
| 50 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘(freeMnd‘(𝐶 ∪ 𝑉))) = (Base‘(freeMnd‘(𝐶 ∪ 𝑉))) |
| 51 | 18, 50 | frmdbas 18865 |
. . . . . 6
⊢ ((𝐶 ∪ 𝑉) ∈ V →
(Base‘(freeMnd‘(𝐶 ∪ 𝑉))) = Word (𝐶 ∪ 𝑉)) |
| 52 | 49, 51 | ax-mp 5 |
. . . . 5
⊢
(Base‘(freeMnd‘(𝐶 ∪ 𝑉))) = Word (𝐶 ∪ 𝑉) |
| 53 | 52 | eqcomi 2746 |
. . . 4
⊢ Word
(𝐶 ∪ 𝑉) = (Base‘(freeMnd‘(𝐶 ∪ 𝑉))) |
| 54 | 53 | gsumws1 18851 |
. . 3
⊢ (if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉) ∈ Word (𝐶 ∪ 𝑉) → ((freeMnd‘(𝐶 ∪ 𝑉)) Σg
〈“if(𝑋 ∈
𝐴, (𝐹‘𝑋), 〈“𝑋”〉)”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) |
| 55 | 46, 54 | syl 17 |
. 2
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((freeMnd‘(𝐶 ∪ 𝑉)) Σg
〈“if(𝑋 ∈
𝐴, (𝐹‘𝑋), 〈“𝑋”〉)”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) |
| 56 | 20, 44, 55 | 3eqtrd 2781 |
1
⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) |