| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccats1pfxeqrex | Structured version Visualization version GIF version | ||
| Description: There exists a symbol such that its concatenation after the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. (Contributed by AV, 5-Oct-2018.) (Revised by AV, 9-May-2020.) |
| Ref | Expression |
|---|---|
| ccats1pfxeqrex | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉) | |
| 2 | lencl 14459 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 3 | 2 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) ∈ ℕ0) |
| 4 | nn0p1nn 12442 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) + 1) ∈ ℕ) | |
| 5 | nngt0 12178 | . . . . . 6 ⊢ (((♯‘𝑊) + 1) ∈ ℕ → 0 < ((♯‘𝑊) + 1)) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < ((♯‘𝑊) + 1)) |
| 7 | breq2 5099 | . . . . . 6 ⊢ ((♯‘𝑈) = ((♯‘𝑊) + 1) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1))) | |
| 8 | 7 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1))) |
| 9 | 6, 8 | mpbird 257 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < (♯‘𝑈)) |
| 10 | hashgt0n0 14291 | . . . 4 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → 𝑈 ≠ ∅) | |
| 11 | 1, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ≠ ∅) |
| 12 | lswcl 14494 | . . 3 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅) → (lastS‘𝑈) ∈ 𝑉) | |
| 13 | 1, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (lastS‘𝑈) ∈ 𝑉) |
| 14 | ccats1pfxeq 14639 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉))) | |
| 15 | s1eq 14526 | . . . 4 ⊢ (𝑠 = (lastS‘𝑈) → 〈“𝑠”〉 = 〈“(lastS‘𝑈)”〉) | |
| 16 | 15 | oveq2d 7369 | . . 3 ⊢ (𝑠 = (lastS‘𝑈) → (𝑊 ++ 〈“𝑠”〉) = (𝑊 ++ 〈“(lastS‘𝑈)”〉)) |
| 17 | 16 | rspceeqv 3602 | . 2 ⊢ (((lastS‘𝑈) ∈ 𝑉 ∧ 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉)) |
| 18 | 13, 14, 17 | syl6an 684 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 ℕcn 12147 ℕ0cn0 12403 ♯chash 14256 Word cword 14439 lastSclsw 14488 ++ cconcat 14496 〈“cs1 14521 prefix cpfx 14596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-hash 14257 df-word 14440 df-lsw 14489 df-concat 14497 df-s1 14522 df-substr 14567 df-pfx 14597 |
| This theorem is referenced by: reuccatpfxs1lem 14671 |
| Copyright terms: Public domain | W3C validator |