| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 “s 𝑃) = (𝐹 “s 𝑃)) |
| 2 | | r1plmhm.2 |
. . . . . . . . . . . 12
⊢ 𝑈 = (Base‘𝑃) |
| 3 | 2 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
| 4 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 5 | | r1plmhm.9 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | 5 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 7 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ 𝑈) |
| 8 | | r1plmhm.10 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ 𝑁) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑀 ∈ 𝑁) |
| 10 | | r1plmhm.4 |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (rem1p‘𝑅) |
| 11 | | r1plmhm.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (Poly1‘𝑅) |
| 12 | | r1plmhm.5 |
. . . . . . . . . . . . . . 15
⊢ 𝑁 =
(Unic1p‘𝑅) |
| 13 | 10, 11, 2, 12 | r1pcl 26121 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑀 ∈ 𝑁) → (𝑓𝐸𝑀) ∈ 𝑈) |
| 14 | 6, 7, 9, 13 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → (𝑓𝐸𝑀) ∈ 𝑈) |
| 15 | | r1plmhm.6 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑓 ∈ 𝑈 ↦ (𝑓𝐸𝑀)) |
| 16 | 14, 15 | fmptd 7109 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑈⟶𝑈) |
| 17 | | fimadmfo 6804 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑈⟶𝑈 → 𝐹:𝑈–onto→(𝐹 “ 𝑈)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑈–onto→(𝐹 “ 𝑈)) |
| 19 | | anass 468 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ↔ (𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈))) |
| 20 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑓)) |
| 21 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑏) = (𝐹‘𝑞)) |
| 22 | 20, 21 | oveq12d 7428 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) |
| 23 | 11, 2, 10, 12, 15, 5, 8 | r1plmhm 33624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom (𝐹 “s 𝑃))) |
| 24 | 23 | lmhmghmd 33037 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃))) |
| 25 | 24 | ad6antr 736 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃))) |
| 26 | | simp-6r 787 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑎 ∈ 𝑈) |
| 27 | | simp-5r 785 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑏 ∈ 𝑈) |
| 28 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g‘(𝐹 “s 𝑃)) = (+g‘(𝐹 “s
𝑃)) |
| 29 | 2, 4, 28 | ghmlin 19209 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏))) |
| 30 | 25, 26, 27, 29 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏))) |
| 31 | | simp-4r 783 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑓 ∈ 𝑈) |
| 32 | | simpllr 775 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑞 ∈ 𝑈) |
| 33 | 2, 4, 28 | ghmlin 19209 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃)) ∧ 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈) → (𝐹‘(𝑓(+g‘𝑃)𝑞)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) |
| 34 | 25, 31, 32, 33 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑓(+g‘𝑃)𝑞)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) |
| 35 | 22, 30, 34 | 3eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞))) |
| 36 | 35 | expl 457 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
| 37 | 36 | anasss 466 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
| 38 | 19, 37 | sylanbr 582 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
| 39 | 38 | 3impa 1109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
| 40 | 11 | ply1ring 22188 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 41 | 5, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 42 | 41 | ringgrpd 20207 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 43 | 42 | grpmndd 18934 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ Mnd) |
| 44 | | r1pquslmic.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑃) |
| 45 | 1, 3, 4, 18, 39, 43, 44 | imasmnd 18758 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹 “s 𝑃) ∈ Mnd ∧ (𝐹‘ 0 ) =
(0g‘(𝐹
“s 𝑃)))) |
| 46 | 45 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘(𝐹
“s 𝑃))) |
| 47 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑓 = 0 → (𝑓𝐸𝑀) = ( 0 𝐸𝑀)) |
| 48 | 11, 2, 12, 10, 5, 8, 44 | r1p0 33620 |
. . . . . . . . . . 11
⊢ (𝜑 → ( 0 𝐸𝑀) = 0 ) |
| 49 | 47, 48 | sylan9eqr 2793 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 = 0 ) → (𝑓𝐸𝑀) = 0 ) |
| 50 | 2, 44 | ring0cl 20232 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring → 0 ∈ 𝑈) |
| 51 | 41, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ 𝑈) |
| 52 | 15, 49, 51, 51 | fvmptd2 6999 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘ 0 ) = 0 ) |
| 53 | 46, 52 | eqtr3d 2773 |
. . . . . . . 8
⊢ (𝜑 →
(0g‘(𝐹
“s 𝑃)) = 0 ) |
| 54 | 53 | sneqd 4618 |
. . . . . . 7
⊢ (𝜑 →
{(0g‘(𝐹
“s 𝑃))} = { 0 }) |
| 55 | 54 | imaeq2d 6052 |
. . . . . 6
⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = (◡𝐹 “ { 0 })) |
| 56 | | r1pquslmic.k |
. . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 57 | 55, 56 | eqtr4di 2789 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = 𝐾) |
| 58 | 57 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))})) = (𝑃 ~QG 𝐾)) |
| 59 | 58 | oveq2d 7426 |
. . 3
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = (𝑃 /s (𝑃 ~QG 𝐾))) |
| 60 | | r1pquslmic.q |
. . 3
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾)) |
| 61 | 59, 60 | eqtr4di 2789 |
. 2
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = 𝑄) |
| 62 | | eqid 2736 |
. . 3
⊢
(0g‘(𝐹 “s 𝑃)) = (0g‘(𝐹 “s
𝑃)) |
| 63 | | eqid 2736 |
. . 3
⊢ (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) |
| 64 | | eqid 2736 |
. . 3
⊢ (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) |
| 65 | 16 | ffnd 6712 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝑈) |
| 66 | | fnima 6673 |
. . . . 5
⊢ (𝐹 Fn 𝑈 → (𝐹 “ 𝑈) = ran 𝐹) |
| 67 | 65, 66 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) = ran 𝐹) |
| 68 | 11 | fvexi 6895 |
. . . . . 6
⊢ 𝑃 ∈ V |
| 69 | 68 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ V) |
| 70 | 1, 3, 18, 69 | imasbas 17531 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) = (Base‘(𝐹 “s 𝑃))) |
| 71 | 67, 70 | eqtr3d 2773 |
. . 3
⊢ (𝜑 → ran 𝐹 = (Base‘(𝐹 “s 𝑃))) |
| 72 | 62, 23, 63, 64, 71 | lmicqusker 33438 |
. 2
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))})))
≃𝑚 (𝐹 “s 𝑃)) |
| 73 | 61, 72 | eqbrtrrd 5148 |
1
⊢ (𝜑 → 𝑄 ≃𝑚 (𝐹 “s
𝑃)) |