Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pquslmic Structured version   Visualization version   GIF version

Theorem r1pquslmic 33596
Description: The univariate polynomial remainder ring (𝐹s 𝑃) is module isomorphic with the quotient ring. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1plmhm.1 𝑃 = (Poly1𝑅)
r1plmhm.2 𝑈 = (Base‘𝑃)
r1plmhm.4 𝐸 = (rem1p𝑅)
r1plmhm.5 𝑁 = (Unic1p𝑅)
r1plmhm.6 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
r1plmhm.9 (𝜑𝑅 ∈ Ring)
r1plmhm.10 (𝜑𝑀𝑁)
r1pquslmic.0 0 = (0g𝑃)
r1pquslmic.k 𝐾 = (𝐹 “ { 0 })
r1pquslmic.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾))
Assertion
Ref Expression
r1pquslmic (𝜑𝑄𝑚 (𝐹s 𝑃))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀   𝑃,𝑓   𝑈,𝑓   𝜑,𝑓   0 ,𝑓   𝑓,𝐹   𝑄,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐾(𝑓)   𝑁(𝑓)

Proof of Theorem r1pquslmic
Dummy variables 𝑎 𝑏 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . . . . . . . . . . 11 (𝜑 → (𝐹s 𝑃) = (𝐹s 𝑃))
2 r1plmhm.2 . . . . . . . . . . . 12 𝑈 = (Base‘𝑃)
32a1i 11 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝑃))
4 eqid 2740 . . . . . . . . . . 11 (+g𝑃) = (+g𝑃)
5 r1plmhm.9 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Ring)
65adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑈) → 𝑅 ∈ Ring)
7 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑈) → 𝑓𝑈)
8 r1plmhm.10 . . . . . . . . . . . . . . 15 (𝜑𝑀𝑁)
98adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑈) → 𝑀𝑁)
10 r1plmhm.4 . . . . . . . . . . . . . . 15 𝐸 = (rem1p𝑅)
11 r1plmhm.1 . . . . . . . . . . . . . . 15 𝑃 = (Poly1𝑅)
12 r1plmhm.5 . . . . . . . . . . . . . . 15 𝑁 = (Unic1p𝑅)
1310, 11, 2, 12r1pcl 26218 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑓𝑈𝑀𝑁) → (𝑓𝐸𝑀) ∈ 𝑈)
146, 7, 9, 13syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑓𝑈) → (𝑓𝐸𝑀) ∈ 𝑈)
15 r1plmhm.6 . . . . . . . . . . . . 13 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
1614, 15fmptd 7148 . . . . . . . . . . . 12 (𝜑𝐹:𝑈𝑈)
17 fimadmfo 6843 . . . . . . . . . . . 12 (𝐹:𝑈𝑈𝐹:𝑈onto→(𝐹𝑈))
1816, 17syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑈onto→(𝐹𝑈))
19 anass 468 . . . . . . . . . . . . 13 (((𝜑𝑎𝑈) ∧ 𝑏𝑈) ↔ (𝜑 ∧ (𝑎𝑈𝑏𝑈)))
20 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝐹𝑓))
21 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝐹𝑞))
2220, 21oveq12d 7466 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝐹𝑎)(+g‘(𝐹s 𝑃))(𝐹𝑏)) = ((𝐹𝑓)(+g‘(𝐹s 𝑃))(𝐹𝑞)))
2311, 2, 10, 12, 15, 5, 8r1plmhm 33595 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
2423lmhmghmd 33023 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)))
2524ad6antr 735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)))
26 simp-6r 787 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑎𝑈)
27 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑏𝑈)
28 eqid 2740 . . . . . . . . . . . . . . . . . 18 (+g‘(𝐹s 𝑃)) = (+g‘(𝐹s 𝑃))
292, 4, 28ghmlin 19261 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)) ∧ 𝑎𝑈𝑏𝑈) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝐹𝑎)(+g‘(𝐹s 𝑃))(𝐹𝑏)))
3025, 26, 27, 29syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝐹𝑎)(+g‘(𝐹s 𝑃))(𝐹𝑏)))
31 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑓𝑈)
32 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑞𝑈)
332, 4, 28ghmlin 19261 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)) ∧ 𝑓𝑈𝑞𝑈) → (𝐹‘(𝑓(+g𝑃)𝑞)) = ((𝐹𝑓)(+g‘(𝐹s 𝑃))(𝐹𝑞)))
3425, 31, 32, 33syl3anc 1371 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑓(+g𝑃)𝑞)) = ((𝐹𝑓)(+g‘(𝐹s 𝑃))(𝐹𝑞)))
3522, 30, 343eqtr4d 2790 . . . . . . . . . . . . . . 15 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞)))
3635expl 457 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
3736anasss 466 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ (𝑓𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
3819, 37sylanbr 581 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝑈𝑏𝑈)) ∧ (𝑓𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
39383impa 1110 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑈𝑏𝑈) ∧ (𝑓𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
4011ply1ring 22270 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
415, 40syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Ring)
4241ringgrpd 20269 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Grp)
4342grpmndd 18986 . . . . . . . . . . 11 (𝜑𝑃 ∈ Mnd)
44 r1pquslmic.0 . . . . . . . . . . 11 0 = (0g𝑃)
451, 3, 4, 18, 39, 43, 44imasmnd 18810 . . . . . . . . . 10 (𝜑 → ((𝐹s 𝑃) ∈ Mnd ∧ (𝐹0 ) = (0g‘(𝐹s 𝑃))))
4645simprd 495 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g‘(𝐹s 𝑃)))
47 oveq1 7455 . . . . . . . . . . 11 (𝑓 = 0 → (𝑓𝐸𝑀) = ( 0 𝐸𝑀))
4811, 2, 12, 10, 5, 8, 44r1p0 33591 . . . . . . . . . . 11 (𝜑 → ( 0 𝐸𝑀) = 0 )
4947, 48sylan9eqr 2802 . . . . . . . . . 10 ((𝜑𝑓 = 0 ) → (𝑓𝐸𝑀) = 0 )
502, 44ring0cl 20290 . . . . . . . . . . 11 (𝑃 ∈ Ring → 0𝑈)
5141, 50syl 17 . . . . . . . . . 10 (𝜑0𝑈)
5215, 49, 51, 51fvmptd2 7037 . . . . . . . . 9 (𝜑 → (𝐹0 ) = 0 )
5346, 52eqtr3d 2782 . . . . . . . 8 (𝜑 → (0g‘(𝐹s 𝑃)) = 0 )
5453sneqd 4660 . . . . . . 7 (𝜑 → {(0g‘(𝐹s 𝑃))} = { 0 })
5554imaeq2d 6089 . . . . . 6 (𝜑 → (𝐹 “ {(0g‘(𝐹s 𝑃))}) = (𝐹 “ { 0 }))
56 r1pquslmic.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5755, 56eqtr4di 2798 . . . . 5 (𝜑 → (𝐹 “ {(0g‘(𝐹s 𝑃))}) = 𝐾)
5857oveq2d 7464 . . . 4 (𝜑 → (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))})) = (𝑃 ~QG 𝐾))
5958oveq2d 7464 . . 3 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) = (𝑃 /s (𝑃 ~QG 𝐾)))
60 r1pquslmic.q . . 3 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾))
6159, 60eqtr4di 2798 . 2 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) = 𝑄)
62 eqid 2740 . . 3 (0g‘(𝐹s 𝑃)) = (0g‘(𝐹s 𝑃))
63 eqid 2740 . . 3 (𝐹 “ {(0g‘(𝐹s 𝑃))}) = (𝐹 “ {(0g‘(𝐹s 𝑃))})
64 eqid 2740 . . 3 (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) = (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))})))
6516ffnd 6748 . . . . 5 (𝜑𝐹 Fn 𝑈)
66 fnima 6710 . . . . 5 (𝐹 Fn 𝑈 → (𝐹𝑈) = ran 𝐹)
6765, 66syl 17 . . . 4 (𝜑 → (𝐹𝑈) = ran 𝐹)
6811fvexi 6934 . . . . . 6 𝑃 ∈ V
6968a1i 11 . . . . 5 (𝜑𝑃 ∈ V)
701, 3, 18, 69imasbas 17572 . . . 4 (𝜑 → (𝐹𝑈) = (Base‘(𝐹s 𝑃)))
7167, 70eqtr3d 2782 . . 3 (𝜑 → ran 𝐹 = (Base‘(𝐹s 𝑃)))
7262, 23, 63, 64, 71lmicqusker 33411 . 2 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) ≃𝑚 (𝐹s 𝑃))
7361, 72eqbrtrrd 5190 1 (𝜑𝑄𝑚 (𝐹s 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   class class class wbr 5166  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  s cimas 17564   /s cqus 17565  Mndcmnd 18772   ~QG cqg 19162   GrpHom cghm 19252  Ringcrg 20260  𝑚 clmic 21043  Poly1cpl1 22199  Unic1pcuc1p 26186  rem1pcr1p 26188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-gim 19299  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-lmod 20882  df-lss 20953  df-lmhm 21044  df-lmim 21045  df-lmic 21046  df-cnfld 21388  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-uc1p 26191  df-q1p 26192  df-r1p 26193
This theorem is referenced by:  algextdeglem6  33713
  Copyright terms: Public domain W3C validator