| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqidd 2738 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐹 “s 𝑃) = (𝐹 “s 𝑃)) | 
| 2 |  | r1plmhm.2 | . . . . . . . . . . . 12
⊢ 𝑈 = (Base‘𝑃) | 
| 3 | 2 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) | 
| 4 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(+g‘𝑃) = (+g‘𝑃) | 
| 5 |  | r1plmhm.9 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 6 | 5 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑅 ∈ Ring) | 
| 7 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ 𝑈) | 
| 8 |  | r1plmhm.10 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ 𝑁) | 
| 9 | 8 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑀 ∈ 𝑁) | 
| 10 |  | r1plmhm.4 | . . . . . . . . . . . . . . 15
⊢ 𝐸 = (rem1p‘𝑅) | 
| 11 |  | r1plmhm.1 | . . . . . . . . . . . . . . 15
⊢ 𝑃 = (Poly1‘𝑅) | 
| 12 |  | r1plmhm.5 | . . . . . . . . . . . . . . 15
⊢ 𝑁 =
(Unic1p‘𝑅) | 
| 13 | 10, 11, 2, 12 | r1pcl 26198 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑀 ∈ 𝑁) → (𝑓𝐸𝑀) ∈ 𝑈) | 
| 14 | 6, 7, 9, 13 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → (𝑓𝐸𝑀) ∈ 𝑈) | 
| 15 |  | r1plmhm.6 | . . . . . . . . . . . . 13
⊢ 𝐹 = (𝑓 ∈ 𝑈 ↦ (𝑓𝐸𝑀)) | 
| 16 | 14, 15 | fmptd 7134 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑈⟶𝑈) | 
| 17 |  | fimadmfo 6829 | . . . . . . . . . . . 12
⊢ (𝐹:𝑈⟶𝑈 → 𝐹:𝑈–onto→(𝐹 “ 𝑈)) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑈–onto→(𝐹 “ 𝑈)) | 
| 19 |  | anass 468 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ↔ (𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈))) | 
| 20 |  | simplr 769 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑓)) | 
| 21 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑏) = (𝐹‘𝑞)) | 
| 22 | 20, 21 | oveq12d 7449 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) | 
| 23 | 11, 2, 10, 12, 15, 5, 8 | r1plmhm 33630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom (𝐹 “s 𝑃))) | 
| 24 | 23 | lmhmghmd 33042 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃))) | 
| 25 | 24 | ad6antr 736 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃))) | 
| 26 |  | simp-6r 788 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑎 ∈ 𝑈) | 
| 27 |  | simp-5r 786 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑏 ∈ 𝑈) | 
| 28 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢
(+g‘(𝐹 “s 𝑃)) = (+g‘(𝐹 “s
𝑃)) | 
| 29 | 2, 4, 28 | ghmlin 19239 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏))) | 
| 30 | 25, 26, 27, 29 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏))) | 
| 31 |  | simp-4r 784 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑓 ∈ 𝑈) | 
| 32 |  | simpllr 776 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑞 ∈ 𝑈) | 
| 33 | 2, 4, 28 | ghmlin 19239 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃)) ∧ 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈) → (𝐹‘(𝑓(+g‘𝑃)𝑞)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) | 
| 34 | 25, 31, 32, 33 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑓(+g‘𝑃)𝑞)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) | 
| 35 | 22, 30, 34 | 3eqtr4d 2787 | . . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞))) | 
| 36 | 35 | expl 457 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) | 
| 37 | 36 | anasss 466 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) | 
| 38 | 19, 37 | sylanbr 582 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) | 
| 39 | 38 | 3impa 1110 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) | 
| 40 | 11 | ply1ring 22249 | . . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 41 | 5, 40 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ Ring) | 
| 42 | 41 | ringgrpd 20239 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Grp) | 
| 43 | 42 | grpmndd 18964 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ Mnd) | 
| 44 |  | r1pquslmic.0 | . . . . . . . . . . 11
⊢  0 =
(0g‘𝑃) | 
| 45 | 1, 3, 4, 18, 39, 43, 44 | imasmnd 18788 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐹 “s 𝑃) ∈ Mnd ∧ (𝐹‘ 0 ) =
(0g‘(𝐹
“s 𝑃)))) | 
| 46 | 45 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘(𝐹
“s 𝑃))) | 
| 47 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝑓 = 0 → (𝑓𝐸𝑀) = ( 0 𝐸𝑀)) | 
| 48 | 11, 2, 12, 10, 5, 8, 44 | r1p0 33626 | . . . . . . . . . . 11
⊢ (𝜑 → ( 0 𝐸𝑀) = 0 ) | 
| 49 | 47, 48 | sylan9eqr 2799 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 = 0 ) → (𝑓𝐸𝑀) = 0 ) | 
| 50 | 2, 44 | ring0cl 20264 | . . . . . . . . . . 11
⊢ (𝑃 ∈ Ring → 0 ∈ 𝑈) | 
| 51 | 41, 50 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 0 ∈ 𝑈) | 
| 52 | 15, 49, 51, 51 | fvmptd2 7024 | . . . . . . . . 9
⊢ (𝜑 → (𝐹‘ 0 ) = 0 ) | 
| 53 | 46, 52 | eqtr3d 2779 | . . . . . . . 8
⊢ (𝜑 →
(0g‘(𝐹
“s 𝑃)) = 0 ) | 
| 54 | 53 | sneqd 4638 | . . . . . . 7
⊢ (𝜑 →
{(0g‘(𝐹
“s 𝑃))} = { 0 }) | 
| 55 | 54 | imaeq2d 6078 | . . . . . 6
⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = (◡𝐹 “ { 0 })) | 
| 56 |  | r1pquslmic.k | . . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) | 
| 57 | 55, 56 | eqtr4di 2795 | . . . . 5
⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = 𝐾) | 
| 58 | 57 | oveq2d 7447 | . . . 4
⊢ (𝜑 → (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))})) = (𝑃 ~QG 𝐾)) | 
| 59 | 58 | oveq2d 7447 | . . 3
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = (𝑃 /s (𝑃 ~QG 𝐾))) | 
| 60 |  | r1pquslmic.q | . . 3
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾)) | 
| 61 | 59, 60 | eqtr4di 2795 | . 2
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = 𝑄) | 
| 62 |  | eqid 2737 | . . 3
⊢
(0g‘(𝐹 “s 𝑃)) = (0g‘(𝐹 “s
𝑃)) | 
| 63 |  | eqid 2737 | . . 3
⊢ (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) | 
| 64 |  | eqid 2737 | . . 3
⊢ (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) | 
| 65 | 16 | ffnd 6737 | . . . . 5
⊢ (𝜑 → 𝐹 Fn 𝑈) | 
| 66 |  | fnima 6698 | . . . . 5
⊢ (𝐹 Fn 𝑈 → (𝐹 “ 𝑈) = ran 𝐹) | 
| 67 | 65, 66 | syl 17 | . . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) = ran 𝐹) | 
| 68 | 11 | fvexi 6920 | . . . . . 6
⊢ 𝑃 ∈ V | 
| 69 | 68 | a1i 11 | . . . . 5
⊢ (𝜑 → 𝑃 ∈ V) | 
| 70 | 1, 3, 18, 69 | imasbas 17557 | . . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) = (Base‘(𝐹 “s 𝑃))) | 
| 71 | 67, 70 | eqtr3d 2779 | . . 3
⊢ (𝜑 → ran 𝐹 = (Base‘(𝐹 “s 𝑃))) | 
| 72 | 62, 23, 63, 64, 71 | lmicqusker 33446 | . 2
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))})))
≃𝑚 (𝐹 “s 𝑃)) | 
| 73 | 61, 72 | eqbrtrrd 5167 | 1
⊢ (𝜑 → 𝑄 ≃𝑚 (𝐹 “s
𝑃)) |