Step | Hyp | Ref
| Expression |
1 | | eqidd 2731 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 “s 𝑃) = (𝐹 “s 𝑃)) |
2 | | r1plmhm.2 |
. . . . . . . . . . . 12
⊢ 𝑈 = (Base‘𝑃) |
3 | 2 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝑃)) |
4 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(+g‘𝑃) = (+g‘𝑃) |
5 | | r1plmhm.9 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ Ring) |
6 | 5 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑅 ∈ Ring) |
7 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑓 ∈ 𝑈) |
8 | | r1plmhm.10 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ 𝑁) |
9 | 8 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → 𝑀 ∈ 𝑁) |
10 | | r1plmhm.4 |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (rem1p‘𝑅) |
11 | | r1plmhm.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (Poly1‘𝑅) |
12 | | r1plmhm.5 |
. . . . . . . . . . . . . . 15
⊢ 𝑁 =
(Unic1p‘𝑅) |
13 | 10, 11, 2, 12 | r1pcl 25910 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑀 ∈ 𝑁) → (𝑓𝐸𝑀) ∈ 𝑈) |
14 | 6, 7, 9, 13 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑈) → (𝑓𝐸𝑀) ∈ 𝑈) |
15 | | r1plmhm.6 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑓 ∈ 𝑈 ↦ (𝑓𝐸𝑀)) |
16 | 14, 15 | fmptd 7114 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑈⟶𝑈) |
17 | | fimadmfo 6813 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑈⟶𝑈 → 𝐹:𝑈–onto→(𝐹 “ 𝑈)) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑈–onto→(𝐹 “ 𝑈)) |
19 | | anass 467 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ↔ (𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈))) |
20 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑓)) |
21 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘𝑏) = (𝐹‘𝑞)) |
22 | 20, 21 | oveq12d 7429 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) |
23 | 11, 2, 10, 12, 15, 5, 8 | r1plmhm 32955 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom (𝐹 “s 𝑃))) |
24 | 23 | lmhmghmd 32465 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃))) |
25 | 24 | ad6antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃))) |
26 | | simp-6r 784 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑎 ∈ 𝑈) |
27 | | simp-5r 782 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑏 ∈ 𝑈) |
28 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g‘(𝐹 “s 𝑃)) = (+g‘(𝐹 “s
𝑃)) |
29 | 2, 4, 28 | ghmlin 19135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏))) |
30 | 25, 26, 27, 29 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = ((𝐹‘𝑎)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑏))) |
31 | | simp-4r 780 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑓 ∈ 𝑈) |
32 | | simpllr 772 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → 𝑞 ∈ 𝑈) |
33 | 2, 4, 28 | ghmlin 19135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ (𝑃 GrpHom (𝐹 “s 𝑃)) ∧ 𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈) → (𝐹‘(𝑓(+g‘𝑃)𝑞)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) |
34 | 25, 31, 32, 33 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑓(+g‘𝑃)𝑞)) = ((𝐹‘𝑓)(+g‘(𝐹 “s 𝑃))(𝐹‘𝑞))) |
35 | 22, 30, 34 | 3eqtr4d 2780 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) ∧ (𝐹‘𝑎) = (𝐹‘𝑓)) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞))) |
36 | 35 | expl 456 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ 𝑓 ∈ 𝑈) ∧ 𝑞 ∈ 𝑈) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
37 | 36 | anasss 465 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑈) ∧ 𝑏 ∈ 𝑈) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
38 | 19, 37 | sylanbr 580 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
39 | 38 | 3impa 1108 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ (𝑓 ∈ 𝑈 ∧ 𝑞 ∈ 𝑈)) → (((𝐹‘𝑎) = (𝐹‘𝑓) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑃)𝑏)) = (𝐹‘(𝑓(+g‘𝑃)𝑞)))) |
40 | 11 | ply1ring 21990 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
41 | 5, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ Ring) |
42 | 41 | ringgrpd 20136 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ Grp) |
43 | 42 | grpmndd 18868 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ Mnd) |
44 | | r1pquslmic.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑃) |
45 | 1, 3, 4, 18, 39, 43, 44 | imasmnd 18697 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹 “s 𝑃) ∈ Mnd ∧ (𝐹‘ 0 ) =
(0g‘(𝐹
“s 𝑃)))) |
46 | 45 | simprd 494 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘ 0 ) =
(0g‘(𝐹
“s 𝑃))) |
47 | | oveq1 7418 |
. . . . . . . . . . 11
⊢ (𝑓 = 0 → (𝑓𝐸𝑀) = ( 0 𝐸𝑀)) |
48 | 11, 2, 12, 10, 5, 8, 44 | r1p0 32951 |
. . . . . . . . . . 11
⊢ (𝜑 → ( 0 𝐸𝑀) = 0 ) |
49 | 47, 48 | sylan9eqr 2792 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 = 0 ) → (𝑓𝐸𝑀) = 0 ) |
50 | 2, 44 | ring0cl 20155 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring → 0 ∈ 𝑈) |
51 | 41, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ 𝑈) |
52 | 15, 49, 51, 51 | fvmptd2 7005 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘ 0 ) = 0 ) |
53 | 46, 52 | eqtr3d 2772 |
. . . . . . . 8
⊢ (𝜑 →
(0g‘(𝐹
“s 𝑃)) = 0 ) |
54 | 53 | sneqd 4639 |
. . . . . . 7
⊢ (𝜑 →
{(0g‘(𝐹
“s 𝑃))} = { 0 }) |
55 | 54 | imaeq2d 6058 |
. . . . . 6
⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = (◡𝐹 “ { 0 })) |
56 | | r1pquslmic.k |
. . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
57 | 55, 56 | eqtr4di 2788 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = 𝐾) |
58 | 57 | oveq2d 7427 |
. . . 4
⊢ (𝜑 → (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))})) = (𝑃 ~QG 𝐾)) |
59 | 58 | oveq2d 7427 |
. . 3
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = (𝑃 /s (𝑃 ~QG 𝐾))) |
60 | | r1pquslmic.q |
. . 3
⊢ 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾)) |
61 | 59, 60 | eqtr4di 2788 |
. 2
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = 𝑄) |
62 | | eqid 2730 |
. . 3
⊢
(0g‘(𝐹 “s 𝑃)) = (0g‘(𝐹 “s
𝑃)) |
63 | | eqid 2730 |
. . 3
⊢ (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) = (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}) |
64 | | eqid 2730 |
. . 3
⊢ (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) = (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))}))) |
65 | 16 | ffnd 6717 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝑈) |
66 | | fnima 6679 |
. . . . 5
⊢ (𝐹 Fn 𝑈 → (𝐹 “ 𝑈) = ran 𝐹) |
67 | 65, 66 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) = ran 𝐹) |
68 | 11 | fvexi 6904 |
. . . . . 6
⊢ 𝑃 ∈ V |
69 | 68 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ V) |
70 | 1, 3, 18, 69 | imasbas 17462 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) = (Base‘(𝐹 “s 𝑃))) |
71 | 67, 70 | eqtr3d 2772 |
. . 3
⊢ (𝜑 → ran 𝐹 = (Base‘(𝐹 “s 𝑃))) |
72 | 62, 23, 63, 64, 71 | lmicqusker 32809 |
. 2
⊢ (𝜑 → (𝑃 /s (𝑃 ~QG (◡𝐹 “ {(0g‘(𝐹 “s
𝑃))})))
≃𝑚 (𝐹 “s 𝑃)) |
73 | 61, 72 | eqbrtrrd 5171 |
1
⊢ (𝜑 → 𝑄 ≃𝑚 (𝐹 “s
𝑃)) |