Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pquslmic Structured version   Visualization version   GIF version

Theorem r1pquslmic 33625
Description: The univariate polynomial remainder ring (𝐹s 𝑃) is module isomorphic with the quotient ring. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1plmhm.1 𝑃 = (Poly1𝑅)
r1plmhm.2 𝑈 = (Base‘𝑃)
r1plmhm.4 𝐸 = (rem1p𝑅)
r1plmhm.5 𝑁 = (Unic1p𝑅)
r1plmhm.6 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
r1plmhm.9 (𝜑𝑅 ∈ Ring)
r1plmhm.10 (𝜑𝑀𝑁)
r1pquslmic.0 0 = (0g𝑃)
r1pquslmic.k 𝐾 = (𝐹 “ { 0 })
r1pquslmic.q 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾))
Assertion
Ref Expression
r1pquslmic (𝜑𝑄𝑚 (𝐹s 𝑃))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀   𝑃,𝑓   𝑈,𝑓   𝜑,𝑓   0 ,𝑓   𝑓,𝐹   𝑄,𝑓
Allowed substitution hints:   𝑅(𝑓)   𝐾(𝑓)   𝑁(𝑓)

Proof of Theorem r1pquslmic
Dummy variables 𝑎 𝑏 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝐹s 𝑃) = (𝐹s 𝑃))
2 r1plmhm.2 . . . . . . . . . . . 12 𝑈 = (Base‘𝑃)
32a1i 11 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝑃))
4 eqid 2736 . . . . . . . . . . 11 (+g𝑃) = (+g𝑃)
5 r1plmhm.9 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Ring)
65adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑈) → 𝑅 ∈ Ring)
7 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑈) → 𝑓𝑈)
8 r1plmhm.10 . . . . . . . . . . . . . . 15 (𝜑𝑀𝑁)
98adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑈) → 𝑀𝑁)
10 r1plmhm.4 . . . . . . . . . . . . . . 15 𝐸 = (rem1p𝑅)
11 r1plmhm.1 . . . . . . . . . . . . . . 15 𝑃 = (Poly1𝑅)
12 r1plmhm.5 . . . . . . . . . . . . . . 15 𝑁 = (Unic1p𝑅)
1310, 11, 2, 12r1pcl 26121 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑓𝑈𝑀𝑁) → (𝑓𝐸𝑀) ∈ 𝑈)
146, 7, 9, 13syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑓𝑈) → (𝑓𝐸𝑀) ∈ 𝑈)
15 r1plmhm.6 . . . . . . . . . . . . 13 𝐹 = (𝑓𝑈 ↦ (𝑓𝐸𝑀))
1614, 15fmptd 7109 . . . . . . . . . . . 12 (𝜑𝐹:𝑈𝑈)
17 fimadmfo 6804 . . . . . . . . . . . 12 (𝐹:𝑈𝑈𝐹:𝑈onto→(𝐹𝑈))
1816, 17syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝑈onto→(𝐹𝑈))
19 anass 468 . . . . . . . . . . . . 13 (((𝜑𝑎𝑈) ∧ 𝑏𝑈) ↔ (𝜑 ∧ (𝑎𝑈𝑏𝑈)))
20 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑎) = (𝐹𝑓))
21 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹𝑏) = (𝐹𝑞))
2220, 21oveq12d 7428 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → ((𝐹𝑎)(+g‘(𝐹s 𝑃))(𝐹𝑏)) = ((𝐹𝑓)(+g‘(𝐹s 𝑃))(𝐹𝑞)))
2311, 2, 10, 12, 15, 5, 8r1plmhm 33624 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (𝑃 LMHom (𝐹s 𝑃)))
2423lmhmghmd 33037 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)))
2524ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)))
26 simp-6r 787 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑎𝑈)
27 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑏𝑈)
28 eqid 2736 . . . . . . . . . . . . . . . . . 18 (+g‘(𝐹s 𝑃)) = (+g‘(𝐹s 𝑃))
292, 4, 28ghmlin 19209 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)) ∧ 𝑎𝑈𝑏𝑈) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝐹𝑎)(+g‘(𝐹s 𝑃))(𝐹𝑏)))
3025, 26, 27, 29syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = ((𝐹𝑎)(+g‘(𝐹s 𝑃))(𝐹𝑏)))
31 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑓𝑈)
32 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → 𝑞𝑈)
332, 4, 28ghmlin 19209 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝑃 GrpHom (𝐹s 𝑃)) ∧ 𝑓𝑈𝑞𝑈) → (𝐹‘(𝑓(+g𝑃)𝑞)) = ((𝐹𝑓)(+g‘(𝐹s 𝑃))(𝐹𝑞)))
3425, 31, 32, 33syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑓(+g𝑃)𝑞)) = ((𝐹𝑓)(+g‘(𝐹s 𝑃))(𝐹𝑞)))
3522, 30, 343eqtr4d 2781 . . . . . . . . . . . . . . 15 (((((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) ∧ (𝐹𝑎) = (𝐹𝑓)) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞)))
3635expl 457 . . . . . . . . . . . . . 14 (((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ 𝑓𝑈) ∧ 𝑞𝑈) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
3736anasss 466 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑈) ∧ 𝑏𝑈) ∧ (𝑓𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
3819, 37sylanbr 582 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝑈𝑏𝑈)) ∧ (𝑓𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
39383impa 1109 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑈𝑏𝑈) ∧ (𝑓𝑈𝑞𝑈)) → (((𝐹𝑎) = (𝐹𝑓) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑃)𝑏)) = (𝐹‘(𝑓(+g𝑃)𝑞))))
4011ply1ring 22188 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
415, 40syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ Ring)
4241ringgrpd 20207 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Grp)
4342grpmndd 18934 . . . . . . . . . . 11 (𝜑𝑃 ∈ Mnd)
44 r1pquslmic.0 . . . . . . . . . . 11 0 = (0g𝑃)
451, 3, 4, 18, 39, 43, 44imasmnd 18758 . . . . . . . . . 10 (𝜑 → ((𝐹s 𝑃) ∈ Mnd ∧ (𝐹0 ) = (0g‘(𝐹s 𝑃))))
4645simprd 495 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g‘(𝐹s 𝑃)))
47 oveq1 7417 . . . . . . . . . . 11 (𝑓 = 0 → (𝑓𝐸𝑀) = ( 0 𝐸𝑀))
4811, 2, 12, 10, 5, 8, 44r1p0 33620 . . . . . . . . . . 11 (𝜑 → ( 0 𝐸𝑀) = 0 )
4947, 48sylan9eqr 2793 . . . . . . . . . 10 ((𝜑𝑓 = 0 ) → (𝑓𝐸𝑀) = 0 )
502, 44ring0cl 20232 . . . . . . . . . . 11 (𝑃 ∈ Ring → 0𝑈)
5141, 50syl 17 . . . . . . . . . 10 (𝜑0𝑈)
5215, 49, 51, 51fvmptd2 6999 . . . . . . . . 9 (𝜑 → (𝐹0 ) = 0 )
5346, 52eqtr3d 2773 . . . . . . . 8 (𝜑 → (0g‘(𝐹s 𝑃)) = 0 )
5453sneqd 4618 . . . . . . 7 (𝜑 → {(0g‘(𝐹s 𝑃))} = { 0 })
5554imaeq2d 6052 . . . . . 6 (𝜑 → (𝐹 “ {(0g‘(𝐹s 𝑃))}) = (𝐹 “ { 0 }))
56 r1pquslmic.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5755, 56eqtr4di 2789 . . . . 5 (𝜑 → (𝐹 “ {(0g‘(𝐹s 𝑃))}) = 𝐾)
5857oveq2d 7426 . . . 4 (𝜑 → (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))})) = (𝑃 ~QG 𝐾))
5958oveq2d 7426 . . 3 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) = (𝑃 /s (𝑃 ~QG 𝐾)))
60 r1pquslmic.q . . 3 𝑄 = (𝑃 /s (𝑃 ~QG 𝐾))
6159, 60eqtr4di 2789 . 2 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) = 𝑄)
62 eqid 2736 . . 3 (0g‘(𝐹s 𝑃)) = (0g‘(𝐹s 𝑃))
63 eqid 2736 . . 3 (𝐹 “ {(0g‘(𝐹s 𝑃))}) = (𝐹 “ {(0g‘(𝐹s 𝑃))})
64 eqid 2736 . . 3 (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) = (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))})))
6516ffnd 6712 . . . . 5 (𝜑𝐹 Fn 𝑈)
66 fnima 6673 . . . . 5 (𝐹 Fn 𝑈 → (𝐹𝑈) = ran 𝐹)
6765, 66syl 17 . . . 4 (𝜑 → (𝐹𝑈) = ran 𝐹)
6811fvexi 6895 . . . . . 6 𝑃 ∈ V
6968a1i 11 . . . . 5 (𝜑𝑃 ∈ V)
701, 3, 18, 69imasbas 17531 . . . 4 (𝜑 → (𝐹𝑈) = (Base‘(𝐹s 𝑃)))
7167, 70eqtr3d 2773 . . 3 (𝜑 → ran 𝐹 = (Base‘(𝐹s 𝑃)))
7262, 23, 63, 64, 71lmicqusker 33438 . 2 (𝜑 → (𝑃 /s (𝑃 ~QG (𝐹 “ {(0g‘(𝐹s 𝑃))}))) ≃𝑚 (𝐹s 𝑃))
7361, 72eqbrtrrd 5148 1 (𝜑𝑄𝑚 (𝐹s 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606   class class class wbr 5124  cmpt 5206  ccnv 5658  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  s cimas 17523   /s cqus 17524  Mndcmnd 18717   ~QG cqg 19110   GrpHom cghm 19200  Ringcrg 20198  𝑚 clmic 20984  Poly1cpl1 22117  Unic1pcuc1p 26089  rem1pcr1p 26091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-imas 17527  df-qus 17528  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-lmod 20824  df-lss 20894  df-lmhm 20985  df-lmim 20986  df-lmic 20987  df-cnfld 21321  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018  df-uc1p 26094  df-q1p 26095  df-r1p 26096
This theorem is referenced by:  algextdeglem6  33761
  Copyright terms: Public domain W3C validator