Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil Structured version   Visualization version   GIF version

Theorem cfilucfil 23145
 Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 23848. (Contributed by Thierry Arnoux, 29-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
cfilucfil ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎,𝑥   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦,𝑎   𝑦,𝐷   𝐶,𝑎,𝑥,𝑦

Proof of Theorem cfilucfil
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . 5 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metust 23144 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
3 cfilufbas 22874 . . . 4 ((((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → 𝐶 ∈ (fBas‘𝑋))
42, 3sylan 583 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → 𝐶 ∈ (fBas‘𝑋))
5 simpllr 775 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
6 psmetf 22892 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7 ffun 6490 . . . . . 6 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
85, 6, 73syl 18 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → Fun 𝐷)
92ad2antrr 725 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
10 simplr 768 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)))
111metustfbas 23143 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
1211ad2antrr 725 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
13 cnvimass 5922 . . . . . . . 8 (𝐷 “ (0[,)𝑥)) ⊆ dom 𝐷
14 fdm 6495 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
155, 6, 143syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
1613, 15sseqtrid 3995 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋))
17 simpr 488 . . . . . . . . . . 11 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
1817rphalfcld 12421 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
19 eqidd 2822 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)(𝑥 / 2))))
20 oveq2 7138 . . . . . . . . . . . 12 (𝑎 = (𝑥 / 2) → (0[,)𝑎) = (0[,)(𝑥 / 2)))
2120imaeq2d 5902 . . . . . . . . . . 11 (𝑎 = (𝑥 / 2) → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)(𝑥 / 2))))
2221rspceeqv 3615 . . . . . . . . . 10 (((𝑥 / 2) ∈ ℝ+ ∧ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)(𝑥 / 2)))) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎)))
2318, 19, 22syl2anc 587 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎)))
241metustel 23136 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎))))
2524biimpar 481 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹)
265, 23, 25syl2anc 587 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹)
27 0xr 10665 . . . . . . . . . . 11 0 ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ∈ ℝ*)
29 rpxr 12376 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
30 0le0 11716 . . . . . . . . . . 11 0 ≤ 0
3130a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 0)
32 rpre 12375 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3332rehalfcld 11862 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
34 rphalflt 12396 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
3533, 32, 34ltled 10765 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ≤ 𝑥)
36 icossico 12785 . . . . . . . . . 10 (((0 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (0 ≤ 0 ∧ (𝑥 / 2) ≤ 𝑥)) → (0[,)(𝑥 / 2)) ⊆ (0[,)𝑥))
3728, 29, 31, 35, 36syl22anc 837 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (0[,)(𝑥 / 2)) ⊆ (0[,)𝑥))
38 imass2 5938 . . . . . . . . 9 ((0[,)(𝑥 / 2)) ⊆ (0[,)𝑥) → (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥)))
3917, 37, 383syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥)))
40 sseq1 3968 . . . . . . . . 9 (𝑤 = (𝐷 “ (0[,)(𝑥 / 2))) → (𝑤 ⊆ (𝐷 “ (0[,)𝑥)) ↔ (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥))))
4140rspcev 3600 . . . . . . . 8 (((𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹 ∧ (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥))) → ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))
4226, 39, 41syl2anc 587 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))
43 elfg 22455 . . . . . . . 8 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ ((𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))))
4443biimpar 481 . . . . . . 7 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ((𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))) → (𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹))
4512, 16, 42, 44syl12anc 835 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹))
46 cfiluexsm 22875 . . . . . 6 ((((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ∧ (𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)))
479, 10, 45, 46syl3anc 1368 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)))
48 funimass2 6410 . . . . . . 7 ((Fun 𝐷 ∧ (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥))) → (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
4948ex 416 . . . . . 6 (Fun 𝐷 → ((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)) → (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
5049reximdv 3259 . . . . 5 (Fun 𝐷 → (∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)) → ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
518, 47, 50sylc 65 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
5251ralrimiva 3170 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
534, 52jca 515 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
54 simprl 770 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝐶 ∈ (fBas‘𝑋))
55 oveq2 7138 . . . . . . . . . 10 (𝑥 = 𝑎 → (0[,)𝑥) = (0[,)𝑎))
5655sseq2d 3975 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎)))
5756rexbidv 3283 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎)))
58 simp-4r 783 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
5958simprd 499 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
60 simplr 768 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → 𝑎 ∈ ℝ+)
6157, 59, 60rspcdva 3602 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎))
62 nfv 1916 . . . . . . . . . . . 12 𝑦(𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋))
63 nfv 1916 . . . . . . . . . . . . 13 𝑦 𝐶 ∈ (fBas‘𝑋)
64 nfcv 2974 . . . . . . . . . . . . . 14 𝑦+
65 nfre1 3292 . . . . . . . . . . . . . 14 𝑦𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)
6664, 65nfralw 3213 . . . . . . . . . . . . 13 𝑦𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)
6763, 66nfan 1901 . . . . . . . . . . . 12 𝑦(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
6862, 67nfan 1901 . . . . . . . . . . 11 𝑦((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
69 nfv 1916 . . . . . . . . . . 11 𝑦 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)
7068, 69nfan 1901 . . . . . . . . . 10 𝑦(((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
71 nfv 1916 . . . . . . . . . 10 𝑦 𝑎 ∈ ℝ+
7270, 71nfan 1901 . . . . . . . . 9 𝑦((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+)
73 nfv 1916 . . . . . . . . 9 𝑦(𝐷 “ (0[,)𝑎)) ⊆ 𝑣
7472, 73nfan 1901 . . . . . . . 8 𝑦(((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
7554ad4antr 731 . . . . . . . . . . . 12 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → 𝐶 ∈ (fBas‘𝑋))
76 fbelss 22417 . . . . . . . . . . . 12 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑦𝐶) → 𝑦𝑋)
7775, 76sylancom 591 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → 𝑦𝑋)
78 xpss12 5543 . . . . . . . . . . 11 ((𝑦𝑋𝑦𝑋) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
7977, 77, 78syl2anc 587 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
80 simp-6r 787 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → 𝐷 ∈ (PsMet‘𝑋))
8180, 6, 143syl 18 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → dom 𝐷 = (𝑋 × 𝑋))
8279, 81sseqtrrd 3984 . . . . . . . . 9 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → (𝑦 × 𝑦) ⊆ dom 𝐷)
8382ex 416 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝑦𝐶 → (𝑦 × 𝑦) ⊆ dom 𝐷))
8474, 83ralrimi 3204 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∀𝑦𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷)
85 r19.29r 3243 . . . . . . . 8 ((∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ ∀𝑦𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦𝐶 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷))
86 sseqin2 4167 . . . . . . . . . . . . 13 ((𝑦 × 𝑦) ⊆ dom 𝐷 ↔ (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦))
8786biimpi 219 . . . . . . . . . . . 12 ((𝑦 × 𝑦) ⊆ dom 𝐷 → (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦))
8887adantl 485 . . . . . . . . . . 11 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦))
89 dminss 5983 . . . . . . . . . . 11 (dom 𝐷 ∩ (𝑦 × 𝑦)) ⊆ (𝐷 “ (𝐷 “ (𝑦 × 𝑦)))
9088, 89eqsstrrdi 3998 . . . . . . . . . 10 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝑦 × 𝑦) ⊆ (𝐷 “ (𝐷 “ (𝑦 × 𝑦))))
91 imass2 5938 . . . . . . . . . . 11 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) → (𝐷 “ (𝐷 “ (𝑦 × 𝑦))) ⊆ (𝐷 “ (0[,)𝑎)))
9291adantr 484 . . . . . . . . . 10 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝐷 “ (𝐷 “ (𝑦 × 𝑦))) ⊆ (𝐷 “ (0[,)𝑎)))
9390, 92sstrd 3953 . . . . . . . . 9 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
9493reximi 3231 . . . . . . . 8 (∃𝑦𝐶 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
9585, 94syl 17 . . . . . . 7 ((∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ ∀𝑦𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
9661, 84, 95syl2anc 587 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
97 r19.41v 3332 . . . . . . 7 (∃𝑦𝐶 ((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ↔ (∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣))
98 sstr 3951 . . . . . . . 8 (((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝑦 × 𝑦) ⊆ 𝑣)
9998reximi 3231 . . . . . . 7 (∃𝑦𝐶 ((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
10097, 99sylbir 238 . . . . . 6 ((∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
10196, 100sylancom 591 . . . . 5 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
102 simp-5r 785 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → 𝐷 ∈ (PsMet‘𝑋))
103 simplr 768 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → 𝑤𝐹)
1041metustel 23136 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → (𝑤𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎))))
105104biimpa 480 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑤𝐹) → ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)))
106102, 103, 105syl2anc 587 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)))
107 r19.41v 3332 . . . . . . . 8 (∃𝑎 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) ↔ (∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣))
108 sseq1 3968 . . . . . . . . . 10 (𝑤 = (𝐷 “ (0[,)𝑎)) → (𝑤𝑣 ↔ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣))
109108biimpa 480 . . . . . . . . 9 ((𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) → (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
110109reximi 3231 . . . . . . . 8 (∃𝑎 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
111107, 110sylbir 238 . . . . . . 7 ((∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
112106, 111sylancom 591 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
11311ad2antrr 725 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
114 elfg 22455 . . . . . . . . 9 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤𝑣)))
115114biimpa 480 . . . . . . . 8 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤𝑣))
116113, 115sylancom 591 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤𝑣))
117116simprd 499 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤𝐹 𝑤𝑣)
118112, 117r19.29a 3275 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
119101, 118r19.29a 3275 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
120119ralrimiva 3170 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
1212adantr 484 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
122 iscfilu 22873 . . . 4 (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)))
123121, 122syl 17 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)))
12454, 120, 123mpbir2and 712 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)))
12553, 124impbida 800 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  ∃wrex 3127   ∩ cin 3909   ⊆ wss 3910  ∅c0 4266   class class class wbr 5039   ↦ cmpt 5119   × cxp 5526  ◡ccnv 5527  dom cdm 5528  ran crn 5529   “ cima 5531  Fun wfun 6322  ⟶wf 6324  ‘cfv 6328  (class class class)co 7130  0cc0 10514  ℝ*cxr 10651   ≤ cle 10653   / cdiv 11274  2c2 11670  ℝ+crp 12367  [,)cico 12718  PsMetcpsmet 20505  fBascfbas 20509  filGencfg 20510  UnifOncust 22784  CauFiluccfilu 22871 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-2 11678  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ico 12722  df-psmet 20513  df-fbas 20518  df-fg 20519  df-fil 22430  df-ust 22785  df-cfilu 22872 This theorem is referenced by:  cfilucfil2  23147
 Copyright terms: Public domain W3C validator