MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil Structured version   Visualization version   GIF version

Theorem cfilucfil 22776
Description: Given a metric 𝐷 and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 23475. (Contributed by Thierry Arnoux, 29-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
cfilucfil ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎,𝑥   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦,𝑎   𝑦,𝐷   𝐶,𝑎,𝑥,𝑦

Proof of Theorem cfilucfil
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . 5 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metust 22775 . . . 4 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
3 cfilufbas 22505 . . . 4 ((((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → 𝐶 ∈ (fBas‘𝑋))
42, 3sylan 575 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → 𝐶 ∈ (fBas‘𝑋))
5 simpllr 766 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
6 psmetf 22523 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7 ffun 6296 . . . . . 6 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
85, 6, 73syl 18 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → Fun 𝐷)
92ad2antrr 716 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
10 simplr 759 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)))
111metustfbas 22774 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
1211ad2antrr 716 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
13 cnvimass 5741 . . . . . . . 8 (𝐷 “ (0[,)𝑥)) ⊆ dom 𝐷
14 fdm 6301 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
155, 6, 143syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
1613, 15syl5sseq 3872 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋))
17 simpr 479 . . . . . . . . . . 11 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
1817rphalfcld 12197 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
19 eqidd 2779 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)(𝑥 / 2))))
20 oveq2 6932 . . . . . . . . . . . 12 (𝑎 = (𝑥 / 2) → (0[,)𝑎) = (0[,)(𝑥 / 2)))
2120imaeq2d 5722 . . . . . . . . . . 11 (𝑎 = (𝑥 / 2) → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)(𝑥 / 2))))
2221rspceeqv 3529 . . . . . . . . . 10 (((𝑥 / 2) ∈ ℝ+ ∧ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)(𝑥 / 2)))) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎)))
2318, 19, 22syl2anc 579 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎)))
241metustel 22767 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎))))
2524biimpar 471 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)(𝑥 / 2))) = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹)
265, 23, 25syl2anc 579 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹)
27 0xr 10425 . . . . . . . . . . 11 0 ∈ ℝ*
2827a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ∈ ℝ*)
29 rpxr 12152 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
30 0le0 11487 . . . . . . . . . . 11 0 ≤ 0
3130a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 ≤ 0)
32 rpre 12149 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3332rehalfcld 11633 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
34 rphalflt 12172 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
3533, 32, 34ltled 10526 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ≤ 𝑥)
36 icossico 12559 . . . . . . . . . 10 (((0 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (0 ≤ 0 ∧ (𝑥 / 2) ≤ 𝑥)) → (0[,)(𝑥 / 2)) ⊆ (0[,)𝑥))
3728, 29, 31, 35, 36syl22anc 829 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (0[,)(𝑥 / 2)) ⊆ (0[,)𝑥))
38 imass2 5757 . . . . . . . . 9 ((0[,)(𝑥 / 2)) ⊆ (0[,)𝑥) → (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥)))
3917, 37, 383syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥)))
40 sseq1 3845 . . . . . . . . 9 (𝑤 = (𝐷 “ (0[,)(𝑥 / 2))) → (𝑤 ⊆ (𝐷 “ (0[,)𝑥)) ↔ (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥))))
4140rspcev 3511 . . . . . . . 8 (((𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹 ∧ (𝐷 “ (0[,)(𝑥 / 2))) ⊆ (𝐷 “ (0[,)𝑥))) → ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))
4226, 39, 41syl2anc 579 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))
43 elfg 22087 . . . . . . . 8 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ ((𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))))
4443biimpar 471 . . . . . . 7 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ((𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤 ⊆ (𝐷 “ (0[,)𝑥)))) → (𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹))
4512, 16, 42, 44syl12anc 827 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹))
46 cfiluexsm 22506 . . . . . 6 ((((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ∧ (𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)))
479, 10, 45, 46syl3anc 1439 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)))
48 funimass2 6219 . . . . . . 7 ((Fun 𝐷 ∧ (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥))) → (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
4948ex 403 . . . . . 6 (Fun 𝐷 → ((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)) → (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
5049reximdv 3197 . . . . 5 (Fun 𝐷 → (∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑥)) → ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
518, 47, 50sylc 65 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
5251ralrimiva 3148 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
534, 52jca 507 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
54 simprl 761 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝐶 ∈ (fBas‘𝑋))
55 oveq2 6932 . . . . . . . . . 10 (𝑥 = 𝑎 → (0[,)𝑥) = (0[,)𝑎))
5655sseq2d 3852 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎)))
5756rexbidv 3237 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎)))
58 simp-4r 774 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
5958simprd 491 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
60 simplr 759 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → 𝑎 ∈ ℝ+)
6157, 59, 60rspcdva 3517 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎))
62 nfv 1957 . . . . . . . . . . . 12 𝑦(𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋))
63 nfv 1957 . . . . . . . . . . . . 13 𝑦 𝐶 ∈ (fBas‘𝑋)
64 nfcv 2934 . . . . . . . . . . . . . 14 𝑦+
65 nfre1 3186 . . . . . . . . . . . . . 14 𝑦𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)
6664, 65nfral 3127 . . . . . . . . . . . . 13 𝑦𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)
6763, 66nfan 1946 . . . . . . . . . . . 12 𝑦(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
6862, 67nfan 1946 . . . . . . . . . . 11 𝑦((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
69 nfv 1957 . . . . . . . . . . 11 𝑦 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)
7068, 69nfan 1946 . . . . . . . . . 10 𝑦(((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
71 nfv 1957 . . . . . . . . . 10 𝑦 𝑎 ∈ ℝ+
7270, 71nfan 1946 . . . . . . . . 9 𝑦((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+)
73 nfv 1957 . . . . . . . . 9 𝑦(𝐷 “ (0[,)𝑎)) ⊆ 𝑣
7472, 73nfan 1946 . . . . . . . 8 𝑦(((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
7554ad4antr 722 . . . . . . . . . . . 12 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → 𝐶 ∈ (fBas‘𝑋))
76 fbelss 22049 . . . . . . . . . . . 12 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑦𝐶) → 𝑦𝑋)
7775, 76sylancom 582 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → 𝑦𝑋)
78 xpss12 5372 . . . . . . . . . . 11 ((𝑦𝑋𝑦𝑋) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
7977, 77, 78syl2anc 579 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
80 simp-6r 778 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → 𝐷 ∈ (PsMet‘𝑋))
8180, 6, 143syl 18 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → dom 𝐷 = (𝑋 × 𝑋))
8279, 81sseqtr4d 3861 . . . . . . . . 9 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦𝐶) → (𝑦 × 𝑦) ⊆ dom 𝐷)
8382ex 403 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝑦𝐶 → (𝑦 × 𝑦) ⊆ dom 𝐷))
8474, 83ralrimi 3139 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∀𝑦𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷)
85 r19.29r 3259 . . . . . . . 8 ((∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ ∀𝑦𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦𝐶 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷))
86 sseqin2 4040 . . . . . . . . . . . . 13 ((𝑦 × 𝑦) ⊆ dom 𝐷 ↔ (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦))
8786biimpi 208 . . . . . . . . . . . 12 ((𝑦 × 𝑦) ⊆ dom 𝐷 → (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦))
8887adantl 475 . . . . . . . . . . 11 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦))
89 dminss 5803 . . . . . . . . . . 11 (dom 𝐷 ∩ (𝑦 × 𝑦)) ⊆ (𝐷 “ (𝐷 “ (𝑦 × 𝑦)))
9088, 89syl6eqssr 3875 . . . . . . . . . 10 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝑦 × 𝑦) ⊆ (𝐷 “ (𝐷 “ (𝑦 × 𝑦))))
91 imass2 5757 . . . . . . . . . . 11 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) → (𝐷 “ (𝐷 “ (𝑦 × 𝑦))) ⊆ (𝐷 “ (0[,)𝑎)))
9291adantr 474 . . . . . . . . . 10 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝐷 “ (𝐷 “ (𝑦 × 𝑦))) ⊆ (𝐷 “ (0[,)𝑎)))
9390, 92sstrd 3831 . . . . . . . . 9 (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
9493reximi 3192 . . . . . . . 8 (∃𝑦𝐶 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
9585, 94syl 17 . . . . . . 7 ((∃𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ ∀𝑦𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
9661, 84, 95syl2anc 579 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)))
97 r19.41v 3275 . . . . . . 7 (∃𝑦𝐶 ((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ↔ (∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣))
98 sstr 3829 . . . . . . . 8 (((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝑦 × 𝑦) ⊆ 𝑣)
9998reximi 3192 . . . . . . 7 (∃𝑦𝐶 ((𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
10097, 99sylbir 227 . . . . . 6 ((∃𝑦𝐶 (𝑦 × 𝑦) ⊆ (𝐷 “ (0[,)𝑎)) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
10196, 100sylancom 582 . . . . 5 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
102 simp-5r 776 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → 𝐷 ∈ (PsMet‘𝑋))
103 simplr 759 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → 𝑤𝐹)
1041metustel 22767 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → (𝑤𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎))))
105104biimpa 470 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑤𝐹) → ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)))
106102, 103, 105syl2anc 579 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)))
107 r19.41v 3275 . . . . . . . 8 (∃𝑎 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) ↔ (∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣))
108 sseq1 3845 . . . . . . . . . 10 (𝑤 = (𝐷 “ (0[,)𝑎)) → (𝑤𝑣 ↔ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣))
109108biimpa 470 . . . . . . . . 9 ((𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) → (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
110109reximi 3192 . . . . . . . 8 (∃𝑎 ∈ ℝ+ (𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
111107, 110sylbir 227 . . . . . . 7 ((∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
112106, 111sylancom 582 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤𝐹) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
11311ad2antrr 716 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
114 elfg 22087 . . . . . . . . 9 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤𝑣)))
115114biimpa 470 . . . . . . . 8 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤𝑣))
116113, 115sylancom 582 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤𝐹 𝑤𝑣))
117116simprd 491 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤𝐹 𝑤𝑣)
118112, 117r19.29a 3264 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ⊆ 𝑣)
119101, 118r19.29a 3264 . . . 4 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
120119ralrimiva 3148 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)
1212adantr 474 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
122 iscfilu 22504 . . . 4 (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)))
123121, 122syl 17 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦𝐶 (𝑦 × 𝑦) ⊆ 𝑣)))
12454, 120, 123mpbir2and 703 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)))
12553, 124impbida 791 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  cin 3791  wss 3792  c0 4141   class class class wbr 4888  cmpt 4967   × cxp 5355  ccnv 5356  dom cdm 5357  ran crn 5358  cima 5360  Fun wfun 6131  wf 6133  cfv 6137  (class class class)co 6924  0cc0 10274  *cxr 10412  cle 10414   / cdiv 11034  2c2 11434  +crp 12141  [,)cico 12493  PsMetcpsmet 20130  fBascfbas 20134  filGencfg 20135  UnifOncust 22415  CauFiluccfilu 22502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-2 11442  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ico 12497  df-psmet 20138  df-fbas 20143  df-fg 20144  df-fil 22062  df-ust 22416  df-cfilu 22503
This theorem is referenced by:  cfilucfil2  22778
  Copyright terms: Public domain W3C validator