Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmquskerlem Structured version   Visualization version   GIF version

Theorem rhmquskerlem 33396
Description: The mapping 𝐽 induced by a ring homomorphism 𝐹 from the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
rhmqusker.1 0 = (0g𝐻)
rhmqusker.f (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
rhmqusker.k 𝐾 = (𝐹 “ { 0 })
rhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
rhmquskerlem.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
rhmquskerlem.2 (𝜑𝐺 ∈ CRing)
Assertion
Ref Expression
rhmquskerlem (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem rhmquskerlem
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2729 . 2 (1r𝑄) = (1r𝑄)
3 eqid 2729 . 2 (1r𝐻) = (1r𝐻)
4 eqid 2729 . 2 (.r𝑄) = (.r𝑄)
5 eqid 2729 . 2 (.r𝐻) = (.r𝐻)
6 rhmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))
7 rhmrcl1 20385 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐺 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝐺 ∈ Ring)
9 rhmqusker.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
10 eqid 2729 . . . . . . . 8 (LIdeal‘𝐺) = (LIdeal‘𝐺)
11 rhmqusker.1 . . . . . . . 8 0 = (0g𝐻)
1210, 11kerlidl 21188 . . . . . . 7 (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹 “ { 0 }) ∈ (LIdeal‘𝐺))
136, 12syl 17 . . . . . 6 (𝜑 → (𝐹 “ { 0 }) ∈ (LIdeal‘𝐺))
149, 13eqeltrid 2832 . . . . 5 (𝜑𝐾 ∈ (LIdeal‘𝐺))
15 rhmquskerlem.2 . . . . . 6 (𝜑𝐺 ∈ CRing)
1610crng2idl 21191 . . . . . 6 (𝐺 ∈ CRing → (LIdeal‘𝐺) = (2Ideal‘𝐺))
1715, 16syl 17 . . . . 5 (𝜑 → (LIdeal‘𝐺) = (2Ideal‘𝐺))
1814, 17eleqtrd 2830 . . . 4 (𝜑𝐾 ∈ (2Ideal‘𝐺))
19 rhmqusker.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
20 eqid 2729 . . . . 5 (2Ideal‘𝐺) = (2Ideal‘𝐺)
21 eqid 2729 . . . . 5 (1r𝐺) = (1r𝐺)
2219, 20, 21qus1 21184 . . . 4 ((𝐺 ∈ Ring ∧ 𝐾 ∈ (2Ideal‘𝐺)) → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝐾) = (1r𝑄)))
238, 18, 22syl2anc 584 . . 3 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝐺)](𝐺 ~QG 𝐾) = (1r𝑄)))
2423simpld 494 . 2 (𝜑𝑄 ∈ Ring)
25 rhmrcl2 20386 . . 3 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐻 ∈ Ring)
266, 25syl 17 . 2 (𝜑𝐻 ∈ Ring)
27 rhmghm 20393 . . . . 5 (𝐹 ∈ (𝐺 RingHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
286, 27syl 17 . . . 4 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
29 rhmquskerlem.j . . . 4 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
30 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3130, 21ringidcl 20174 . . . . 5 (𝐺 ∈ Ring → (1r𝐺) ∈ (Base‘𝐺))
328, 31syl 17 . . . 4 (𝜑 → (1r𝐺) ∈ (Base‘𝐺))
3311, 28, 9, 19, 29, 32ghmquskerlem1 19215 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝐾)) = (𝐹‘(1r𝐺)))
3423simprd 495 . . . 4 (𝜑 → [(1r𝐺)](𝐺 ~QG 𝐾) = (1r𝑄))
3534fveq2d 6862 . . 3 (𝜑 → (𝐽‘[(1r𝐺)](𝐺 ~QG 𝐾)) = (𝐽‘(1r𝑄)))
3621, 3rhm1 20398 . . . 4 (𝐹 ∈ (𝐺 RingHom 𝐻) → (𝐹‘(1r𝐺)) = (1r𝐻))
376, 36syl 17 . . 3 (𝜑 → (𝐹‘(1r𝐺)) = (1r𝐻))
3833, 35, 373eqtr3d 2772 . 2 (𝜑 → (𝐽‘(1r𝑄)) = (1r𝐻))
396ad6antr 736 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 RingHom 𝐻))
4019a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
41 eqidd 2730 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
42 ovexd 7422 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
4340, 41, 42, 15qusbas 17508 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4411ghmker 19174 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
4528, 44syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
469, 45eqeltrid 2832 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
47 nsgsubg 19090 . . . . . . . . . . . . . 14 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
48 eqid 2729 . . . . . . . . . . . . . . 15 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
4930, 48eqger 19110 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
5046, 47, 493syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
5150qsss 8749 . . . . . . . . . . . 12 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
5243, 51eqsstrrd 3982 . . . . . . . . . . 11 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
5352sselda 3946 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
5453elpwid 4572 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
5554ad5antr 734 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
56 simp-4r 783 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
5755, 56sseldd 3947 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
5852sselda 3946 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
5958elpwid 4572 . . . . . . . . . 10 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
6059adantlr 715 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
6160ad4antr 732 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
62 simplr 768 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
6361, 62sseldd 3947 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
64 eqid 2729 . . . . . . . 8 (.r𝐺) = (.r𝐺)
6530, 64, 5rhmmul 20395 . . . . . . 7 ((𝐹 ∈ (𝐺 RingHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6639, 57, 63, 65syl3anc 1373 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(.r𝐺)𝑦)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
6750ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
68 simp-6r 787 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
6943ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
7068, 69eleqtrrd 2831 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
71 qsel 8769 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
7267, 70, 56, 71syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
73 simp-5r 785 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
7473, 69eleqtrrd 2831 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
75 qsel 8769 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
7667, 74, 62, 75syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
7772, 76oveq12d 7405 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(.r𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝐾)(.r𝑄)[𝑦](𝐺 ~QG 𝐾)))
7815ad6antr 736 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ CRing)
7914ad6antr 736 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐾 ∈ (LIdeal‘𝐺))
8019, 30, 64, 4, 78, 79, 57, 63qusmulcrng 21194 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝐾)(.r𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝐾))
8177, 80eqtr2d 2765 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → [(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝐾) = (𝑟(.r𝑄)𝑠))
8281fveq2d 6862 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐽‘(𝑟(.r𝑄)𝑠)))
8339, 27syl 17 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8439, 7syl 17 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Ring)
8530, 64, 84, 57, 63ringcld 20169 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(.r𝐺)𝑦) ∈ (Base‘𝐺))
8611, 83, 9, 19, 29, 85ghmquskerlem1 19215 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(.r𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
8782, 86eqtr3d 2766 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = (𝐹‘(𝑥(.r𝐺)𝑦)))
88 simpllr 775 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
89 simpr 484 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
9088, 89oveq12d 7405 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(.r𝐻)(𝐽𝑠)) = ((𝐹𝑥)(.r𝐻)(𝐹𝑦)))
9166, 87, 903eqtr4d 2774 . . . . 5 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9228ad4antr 732 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
93 simpllr 775 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
9411, 92, 9, 19, 29, 93ghmquskerlem2 19217 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9591, 94r19.29a 3141 . . . 4 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
9628ad2antrr 726 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
97 simplr 768 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
9811, 96, 9, 19, 29, 97ghmquskerlem2 19217 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
9995, 98r19.29a 3141 . . 3 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
10099anasss 466 . 2 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(.r𝑄)𝑠)) = ((𝐽𝑟)(.r𝐻)(𝐽𝑠)))
10111, 28, 9, 19, 29ghmquskerlem3 19218 . 2 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
1021, 2, 3, 4, 5, 24, 26, 38, 100, 101isrhm2d 20396 1 (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387   Er wer 8668  [cec 8669   / cqs 8670  Basecbs 17179  .rcmulr 17221  0gc0g 17402   /s cqus 17468  SubGrpcsubg 19052  NrmSGrpcnsg 19053   ~QG cqg 19054   GrpHom cghm 19144  1rcur 20090  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  LIdealclidl 21116  2Idealc2idl 21159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-rhm 20381  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160
This theorem is referenced by:  rhmqusker  33397  algextdeglem4  33710
  Copyright terms: Public domain W3C validator