MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3rr Structured version   Visualization version   GIF version

Theorem simp3rr 1248
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3rr ((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp3rr
StepHypRef Expression
1 simprr 772 . 2 ((𝜒 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp3  8090  omeu  8510  ntrivcvgmul  15827  tsmsxp  24058  tgqioo  24704  ovolunlem2  25415  plyadd  26138  plymul  26139  coeeu  26146  nosupbnd1lem2  27637  noinfbnd1lem2  27652  tghilberti2  28601  cvmlift2lem10  35284  btwnconn1lem1  36060  lplnexllnN  39543  2llnjN  39546  4atlem12b  39590  lplncvrlvol2  39594  lncmp  39762  cdlema2N  39771  cdleme11a  40239  cdleme24  40331  cdleme28  40352  cdlemefr29bpre0N  40385  cdlemefr29clN  40386  cdlemefr32fvaN  40388  cdlemefr32fva1  40389  cdlemefs29bpre0N  40395  cdlemefs29bpre1N  40396  cdlemefs29cpre1N  40397  cdlemefs29clN  40398  cdlemefs32fvaN  40401  cdlemefs32fva1  40402  cdleme36m  40440  cdleme17d3  40475  cdlemg36  40693  cdlemj3  40802  cdlemkid1  40901  cdlemk19ylem  40909  cdlemk19xlem  40921  dihlsscpre  41213  dihord4  41237  dihmeetlem1N  41269  dihatlat  41313  jm2.27  42981
  Copyright terms: Public domain W3C validator