Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: omeu 8392 ntrivcvgmul 15595 tsmsxp 23287 tgqioo 23944 ovolunlem2 24643 plyadd 25359 plymul 25360 coeeu 25367 tghilberti2 26980 cvmlift2lem10 33253 nosupbnd1lem2 33891 noinfbnd1lem2 33906 btwnconn1lem1 34368 lplnexllnN 37557 2llnjN 37560 4atlem12b 37604 lplncvrlvol2 37608 lncmp 37776 cdlema2N 37785 cdleme11a 38253 cdleme24 38345 cdleme28 38366 cdlemefr29bpre0N 38399 cdlemefr29clN 38400 cdlemefr32fvaN 38402 cdlemefr32fva1 38403 cdlemefs29bpre0N 38409 cdlemefs29bpre1N 38410 cdlemefs29cpre1N 38411 cdlemefs29clN 38412 cdlemefs32fvaN 38415 cdlemefs32fva1 38416 cdleme36m 38454 cdleme17d3 38489 cdlemg36 38707 cdlemj3 38816 cdlemkid1 38915 cdlemk19ylem 38923 cdlemk19xlem 38935 dihlsscpre 39227 dihord4 39251 dihmeetlem1N 39283 dihatlat 39327 jm2.27 40810 |
Copyright terms: Public domain | W3C validator |