| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8090 omeu 8510 ntrivcvgmul 15827 tsmsxp 24058 tgqioo 24704 ovolunlem2 25415 plyadd 26138 plymul 26139 coeeu 26146 nosupbnd1lem2 27637 noinfbnd1lem2 27652 tghilberti2 28601 cvmlift2lem10 35284 btwnconn1lem1 36060 lplnexllnN 39543 2llnjN 39546 4atlem12b 39590 lplncvrlvol2 39594 lncmp 39762 cdlema2N 39771 cdleme11a 40239 cdleme24 40331 cdleme28 40352 cdlemefr29bpre0N 40385 cdlemefr29clN 40386 cdlemefr32fvaN 40388 cdlemefr32fva1 40389 cdlemefs29bpre0N 40395 cdlemefs29bpre1N 40396 cdlemefs29cpre1N 40397 cdlemefs29clN 40398 cdlemefs32fvaN 40401 cdlemefs32fva1 40402 cdleme36m 40440 cdleme17d3 40475 cdlemg36 40693 cdlemj3 40802 cdlemkid1 40901 cdlemk19ylem 40909 cdlemk19xlem 40921 dihlsscpre 41213 dihord4 41237 dihmeetlem1N 41269 dihatlat 41313 jm2.27 42981 |
| Copyright terms: Public domain | W3C validator |