| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8129 omeu 8549 ntrivcvgmul 15868 tsmsxp 24042 tgqioo 24688 ovolunlem2 25399 plyadd 26122 plymul 26123 coeeu 26130 nosupbnd1lem2 27621 noinfbnd1lem2 27636 tghilberti2 28565 cvmlift2lem10 35299 btwnconn1lem1 36075 lplnexllnN 39558 2llnjN 39561 4atlem12b 39605 lplncvrlvol2 39609 lncmp 39777 cdlema2N 39786 cdleme11a 40254 cdleme24 40346 cdleme28 40367 cdlemefr29bpre0N 40400 cdlemefr29clN 40401 cdlemefr32fvaN 40403 cdlemefr32fva1 40404 cdlemefs29bpre0N 40410 cdlemefs29bpre1N 40411 cdlemefs29cpre1N 40412 cdlemefs29clN 40413 cdlemefs32fvaN 40416 cdlemefs32fva1 40417 cdleme36m 40455 cdleme17d3 40490 cdlemg36 40708 cdlemj3 40817 cdlemkid1 40916 cdlemk19ylem 40924 cdlemk19xlem 40936 dihlsscpre 41228 dihord4 41252 dihmeetlem1N 41284 dihatlat 41328 jm2.27 42997 |
| Copyright terms: Public domain | W3C validator |