Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: omeu 8447 ntrivcvgmul 15659 tsmsxp 23351 tgqioo 24008 ovolunlem2 24707 plyadd 25423 plymul 25424 coeeu 25431 tghilberti2 27044 cvmlift2lem10 33319 nosupbnd1lem2 33957 noinfbnd1lem2 33972 btwnconn1lem1 34434 lplnexllnN 37620 2llnjN 37623 4atlem12b 37667 lplncvrlvol2 37671 lncmp 37839 cdlema2N 37848 cdleme11a 38316 cdleme24 38408 cdleme28 38429 cdlemefr29bpre0N 38462 cdlemefr29clN 38463 cdlemefr32fvaN 38465 cdlemefr32fva1 38466 cdlemefs29bpre0N 38472 cdlemefs29bpre1N 38473 cdlemefs29cpre1N 38474 cdlemefs29clN 38475 cdlemefs32fvaN 38478 cdlemefs32fva1 38479 cdleme36m 38517 cdleme17d3 38552 cdlemg36 38770 cdlemj3 38879 cdlemkid1 38978 cdlemk19ylem 38986 cdlemk19xlem 38998 dihlsscpre 39290 dihord4 39314 dihmeetlem1N 39346 dihatlat 39390 jm2.27 40868 |
Copyright terms: Public domain | W3C validator |