| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8132 omeu 8552 ntrivcvgmul 15875 tsmsxp 24049 tgqioo 24695 ovolunlem2 25406 plyadd 26129 plymul 26130 coeeu 26137 nosupbnd1lem2 27628 noinfbnd1lem2 27643 tghilberti2 28572 cvmlift2lem10 35306 btwnconn1lem1 36082 lplnexllnN 39565 2llnjN 39568 4atlem12b 39612 lplncvrlvol2 39616 lncmp 39784 cdlema2N 39793 cdleme11a 40261 cdleme24 40353 cdleme28 40374 cdlemefr29bpre0N 40407 cdlemefr29clN 40408 cdlemefr32fvaN 40410 cdlemefr32fva1 40411 cdlemefs29bpre0N 40417 cdlemefs29bpre1N 40418 cdlemefs29cpre1N 40419 cdlemefs29clN 40420 cdlemefs32fvaN 40423 cdlemefs32fva1 40424 cdleme36m 40462 cdleme17d3 40497 cdlemg36 40715 cdlemj3 40824 cdlemkid1 40923 cdlemk19ylem 40931 cdlemk19xlem 40943 dihlsscpre 41235 dihord4 41259 dihmeetlem1N 41291 dihatlat 41335 jm2.27 43004 |
| Copyright terms: Public domain | W3C validator |