| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8149 omeu 8597 ntrivcvgmul 15918 tsmsxp 24093 tgqioo 24739 ovolunlem2 25451 plyadd 26174 plymul 26175 coeeu 26182 nosupbnd1lem2 27673 noinfbnd1lem2 27688 tghilberti2 28617 cvmlift2lem10 35334 btwnconn1lem1 36105 lplnexllnN 39583 2llnjN 39586 4atlem12b 39630 lplncvrlvol2 39634 lncmp 39802 cdlema2N 39811 cdleme11a 40279 cdleme24 40371 cdleme28 40392 cdlemefr29bpre0N 40425 cdlemefr29clN 40426 cdlemefr32fvaN 40428 cdlemefr32fva1 40429 cdlemefs29bpre0N 40435 cdlemefs29bpre1N 40436 cdlemefs29cpre1N 40437 cdlemefs29clN 40438 cdlemefs32fvaN 40441 cdlemefs32fva1 40442 cdleme36m 40480 cdleme17d3 40515 cdlemg36 40733 cdlemj3 40842 cdlemkid1 40941 cdlemk19ylem 40949 cdlemk19xlem 40961 dihlsscpre 41253 dihord4 41277 dihmeetlem1N 41309 dihatlat 41353 jm2.27 43032 |
| Copyright terms: Public domain | W3C validator |