| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8086 omeu 8506 ntrivcvgmul 15811 tsmsxp 24071 tgqioo 24716 ovolunlem2 25427 plyadd 26150 plymul 26151 coeeu 26158 nosupbnd1lem2 27649 noinfbnd1lem2 27664 tghilberti2 28617 cvmlift2lem10 35377 btwnconn1lem1 36152 lplnexllnN 39683 2llnjN 39686 4atlem12b 39730 lplncvrlvol2 39734 lncmp 39902 cdlema2N 39911 cdleme11a 40379 cdleme24 40471 cdleme28 40492 cdlemefr29bpre0N 40525 cdlemefr29clN 40526 cdlemefr32fvaN 40528 cdlemefr32fva1 40529 cdlemefs29bpre0N 40535 cdlemefs29bpre1N 40536 cdlemefs29cpre1N 40537 cdlemefs29clN 40538 cdlemefs32fvaN 40541 cdlemefs32fva1 40542 cdleme36m 40580 cdleme17d3 40615 cdlemg36 40833 cdlemj3 40942 cdlemkid1 41041 cdlemk19ylem 41049 cdlemk19xlem 41061 dihlsscpre 41353 dihord4 41377 dihmeetlem1N 41409 dihatlat 41453 jm2.27 43125 |
| Copyright terms: Public domain | W3C validator |