| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2ant3 1135 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp3 8080 omeu 8500 ntrivcvgmul 15806 tsmsxp 24068 tgqioo 24713 ovolunlem2 25424 plyadd 26147 plymul 26148 coeeu 26155 nosupbnd1lem2 27646 noinfbnd1lem2 27661 tghilberti2 28614 cvmlift2lem10 35344 btwnconn1lem1 36120 lplnexllnN 39602 2llnjN 39605 4atlem12b 39649 lplncvrlvol2 39653 lncmp 39821 cdlema2N 39830 cdleme11a 40298 cdleme24 40390 cdleme28 40411 cdlemefr29bpre0N 40444 cdlemefr29clN 40445 cdlemefr32fvaN 40447 cdlemefr32fva1 40448 cdlemefs29bpre0N 40454 cdlemefs29bpre1N 40455 cdlemefs29cpre1N 40456 cdlemefs29clN 40457 cdlemefs32fvaN 40460 cdlemefs32fva1 40461 cdleme36m 40499 cdleme17d3 40534 cdlemg36 40752 cdlemj3 40861 cdlemkid1 40960 cdlemk19ylem 40968 cdlemk19xlem 40980 dihlsscpre 41272 dihord4 41296 dihmeetlem1N 41328 dihatlat 41372 jm2.27 43040 |
| Copyright terms: Public domain | W3C validator |