MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3rr Structured version   Visualization version   GIF version

Theorem simp3rr 1247
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3rr ((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜓)

Proof of Theorem simp3rr
StepHypRef Expression
1 simprr 772 . 2 ((𝜒 ∧ (𝜑𝜓)) → 𝜓)
213ad2ant3 1135 1 ((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  poxp3  8191  omeu  8641  ntrivcvgmul  15950  tsmsxp  24184  tgqioo  24841  ovolunlem2  25552  plyadd  26276  plymul  26277  coeeu  26284  nosupbnd1lem2  27772  noinfbnd1lem2  27787  tghilberti2  28664  cvmlift2lem10  35280  btwnconn1lem1  36051  lplnexllnN  39521  2llnjN  39524  4atlem12b  39568  lplncvrlvol2  39572  lncmp  39740  cdlema2N  39749  cdleme11a  40217  cdleme24  40309  cdleme28  40330  cdlemefr29bpre0N  40363  cdlemefr29clN  40364  cdlemefr32fvaN  40366  cdlemefr32fva1  40367  cdlemefs29bpre0N  40373  cdlemefs29bpre1N  40374  cdlemefs29cpre1N  40375  cdlemefs29clN  40376  cdlemefs32fvaN  40379  cdlemefs32fva1  40380  cdleme36m  40418  cdleme17d3  40453  cdlemg36  40671  cdlemj3  40780  cdlemkid1  40879  cdlemk19ylem  40887  cdlemk19xlem  40899  dihlsscpre  41191  dihord4  41215  dihmeetlem1N  41247  dihatlat  41291  jm2.27  42965
  Copyright terms: Public domain W3C validator