Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 773 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant3 1136 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: omeu 8245 ntrivcvgmul 15353 tsmsxp 22909 tgqioo 23555 ovolunlem2 24253 plyadd 24969 plymul 24970 coeeu 24977 tghilberti2 26587 cvmlift2lem10 32848 nosupbnd1lem2 33558 noinfbnd1lem2 33573 btwnconn1lem1 34035 lplnexllnN 37224 2llnjN 37227 4atlem12b 37271 lplncvrlvol2 37275 lncmp 37443 cdlema2N 37452 cdleme11a 37920 cdleme24 38012 cdleme28 38033 cdlemefr29bpre0N 38066 cdlemefr29clN 38067 cdlemefr32fvaN 38069 cdlemefr32fva1 38070 cdlemefs29bpre0N 38076 cdlemefs29bpre1N 38077 cdlemefs29cpre1N 38078 cdlemefs29clN 38079 cdlemefs32fvaN 38082 cdlemefs32fva1 38083 cdleme36m 38121 cdleme17d3 38156 cdlemg36 38374 cdlemj3 38483 cdlemkid1 38582 cdlemk19ylem 38590 cdlemk19xlem 38602 dihlsscpre 38894 dihord4 38918 dihmeetlem1N 38950 dihatlat 38994 jm2.27 40425 |
Copyright terms: Public domain | W3C validator |