Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid1 Structured version   Visualization version   GIF version

Theorem cdlemkid1 38673
Description: Lemma for cdlemkid 38687. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
Assertion
Ref Expression
cdlemkid1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))

Proof of Theorem cdlemkid1
StepHypRef Expression
1 cdlemk5.z . . 3 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
21oveq1i 7223 . 2 (𝑍 (𝑅𝑏)) = (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏))
3 simp1l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ HL)
4 simp1 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp3rl 1248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏𝑇)
6 simp3rr 1249 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏 ≠ ( I ↾ 𝐵))
7 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
8 cdlemk5.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemk5.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlnidat 37924 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)) → (𝑅𝑏) ∈ 𝐴)
134, 5, 6, 12syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) ∈ 𝐴)
14 simp3ll 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐴)
15 cdlemk5.j . . . . . 6 = (join‘𝐾)
167, 15, 8hlatjcl 37118 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝑏) ∈ 𝐴) → (𝑃 (𝑅𝑏)) ∈ 𝐵)
173, 14, 13, 16syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅𝑏)) ∈ 𝐵)
183hllatd 37115 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ Lat)
19 simp22 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑁𝑇)
207, 8atbase 37040 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2114, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐵)
227, 9, 10ltrncl 37876 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇𝑃𝐵) → (𝑁𝑃) ∈ 𝐵)
234, 19, 21, 22syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑁𝑃) ∈ 𝐵)
24 simp21 1208 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐹𝑇)
259, 10ltrncnv 37897 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
264, 24, 25syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐹𝑇)
279, 10ltrnco 38470 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇𝐹𝑇) → (𝑏𝐹) ∈ 𝑇)
284, 5, 26, 27syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑏𝐹) ∈ 𝑇)
297, 9, 10, 11trlcl 37915 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑏𝐹) ∈ 𝑇) → (𝑅‘(𝑏𝐹)) ∈ 𝐵)
304, 28, 29syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(𝑏𝐹)) ∈ 𝐵)
317, 15latjcl 17945 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑁𝑃) ∈ 𝐵 ∧ (𝑅‘(𝑏𝐹)) ∈ 𝐵) → ((𝑁𝑃) (𝑅‘(𝑏𝐹))) ∈ 𝐵)
3218, 23, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑁𝑃) (𝑅‘(𝑏𝐹))) ∈ 𝐵)
33 cdlemk5.l . . . . . 6 = (le‘𝐾)
3433, 15, 8hlatlej2 37127 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝑏) ∈ 𝐴) → (𝑅𝑏) (𝑃 (𝑅𝑏)))
353, 14, 13, 34syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) (𝑃 (𝑅𝑏)))
36 cdlemk5.m . . . . 5 = (meet‘𝐾)
377, 33, 15, 36, 8atmod2i1 37612 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝑏) ∈ 𝐴 ∧ (𝑃 (𝑅𝑏)) ∈ 𝐵 ∧ ((𝑁𝑃) (𝑅‘(𝑏𝐹))) ∈ 𝐵) ∧ (𝑅𝑏) (𝑃 (𝑅𝑏))) → (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏)) = ((𝑃 (𝑅𝑏)) (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏))))
383, 13, 17, 32, 35, 37syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏)) = ((𝑃 (𝑅𝑏)) (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏))))
397, 8atbase 37040 . . . . . . . 8 ((𝑅𝑏) ∈ 𝐴 → (𝑅𝑏) ∈ 𝐵)
4013, 39syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) ∈ 𝐵)
417, 9, 10, 11trlcl 37915 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ 𝐵)
424, 19, 41syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑁) ∈ 𝐵)
437, 15latj32 17991 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑅𝑏) ∈ 𝐵 ∧ (𝑅𝑁) ∈ 𝐵)) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = ((𝑃 (𝑅𝑁)) (𝑅𝑏)))
4418, 21, 40, 42, 43syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = ((𝑃 (𝑅𝑁)) (𝑅𝑏)))
45 simp3l 1203 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4633, 15, 8, 9, 10, 11trljat3 37919 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑁)) = ((𝑁𝑃) (𝑅𝑁)))
474, 19, 45, 46syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅𝑁)) = ((𝑁𝑃) (𝑅𝑁)))
4847oveq1d 7228 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑁)) (𝑅𝑏)) = (((𝑁𝑃) (𝑅𝑁)) (𝑅𝑏)))
497, 15latjass 17989 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑁𝑃) ∈ 𝐵 ∧ (𝑅𝑁) ∈ 𝐵 ∧ (𝑅𝑏) ∈ 𝐵)) → (((𝑁𝑃) (𝑅𝑁)) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
5018, 23, 42, 40, 49syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑁𝑃) (𝑅𝑁)) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
5144, 48, 503eqtrd 2781 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
527, 15latjass 17989 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑁𝑃) ∈ 𝐵 ∧ (𝑅‘(𝑏𝐹)) ∈ 𝐵 ∧ (𝑅𝑏) ∈ 𝐵)) → (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅‘(𝑏𝐹)) (𝑅𝑏))))
5318, 23, 30, 40, 52syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅‘(𝑏𝐹)) (𝑅𝑏))))
547, 15latjcom 17953 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑅𝑁) ∈ 𝐵 ∧ (𝑅𝑏) ∈ 𝐵) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅𝑏) (𝑅𝑁)))
5518, 42, 40, 54syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅𝑏) (𝑅𝑁)))
569, 10, 11trlcnv 37916 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
574, 24, 56syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) = (𝑅𝐹))
58 simp23 1210 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) = (𝑅𝑁))
5957, 58eqtrd 2777 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) = (𝑅𝑁))
6059oveq2d 7229 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑏) (𝑅𝐹)) = ((𝑅𝑏) (𝑅𝑁)))
6155, 60eqtr4d 2780 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅𝑏) (𝑅𝐹)))
6215, 9, 10, 11trljco 38491 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇𝐹𝑇) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅𝑏) (𝑅𝐹)))
634, 5, 26, 62syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅𝑏) (𝑅𝐹)))
647, 15latjcom 17953 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑅𝑏) ∈ 𝐵 ∧ (𝑅‘(𝑏𝐹)) ∈ 𝐵) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅‘(𝑏𝐹)) (𝑅𝑏)))
6518, 40, 30, 64syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅‘(𝑏𝐹)) (𝑅𝑏)))
6661, 63, 653eqtr2d 2783 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅‘(𝑏𝐹)) (𝑅𝑏)))
6766oveq2d 7229 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))) = ((𝑁𝑃) ((𝑅‘(𝑏𝐹)) (𝑅𝑏))))
6853, 67eqtr4d 2780 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
6951, 68eqtr4d 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)))
7069oveq2d 7229 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) ((𝑃 (𝑅𝑏)) (𝑅𝑁))) = ((𝑃 (𝑅𝑏)) (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏))))
717, 15, 36latabs2 17982 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝑏)) ∈ 𝐵 ∧ (𝑅𝑁) ∈ 𝐵) → ((𝑃 (𝑅𝑏)) ((𝑃 (𝑅𝑏)) (𝑅𝑁))) = (𝑃 (𝑅𝑏)))
7218, 17, 42, 71syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) ((𝑃 (𝑅𝑏)) (𝑅𝑁))) = (𝑃 (𝑅𝑏)))
7338, 70, 723eqtr2d 2783 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
742, 73syl5eq 2790 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053   I cid 5454  ccnv 5550  cres 5553  ccom 5555  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  meetcmee 17819  Latclat 17937  Atomscatm 37014  HLchlt 37101  LHypclh 37735  LTrncltrn 37852  trLctrl 37909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-undef 8015  df-map 8510  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250  df-lvols 37251  df-lines 37252  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739  df-laut 37740  df-ldil 37855  df-ltrn 37856  df-trl 37910
This theorem is referenced by:  cdlemkid2  38675
  Copyright terms: Public domain W3C validator