Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid1 Structured version   Visualization version   GIF version

Theorem cdlemkid1 40923
Description: Lemma for cdlemkid 40937. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
Assertion
Ref Expression
cdlemkid1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))

Proof of Theorem cdlemkid1
StepHypRef Expression
1 cdlemk5.z . . 3 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
21oveq1i 7400 . 2 (𝑍 (𝑅𝑏)) = (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏))
3 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ HL)
4 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp3rl 1247 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏𝑇)
6 simp3rr 1248 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑏 ≠ ( I ↾ 𝐵))
7 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
8 cdlemk5.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemk5.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlnidat 40174 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)) → (𝑅𝑏) ∈ 𝐴)
134, 5, 6, 12syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) ∈ 𝐴)
14 simp3ll 1245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐴)
15 cdlemk5.j . . . . . 6 = (join‘𝐾)
167, 15, 8hlatjcl 39367 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝑏) ∈ 𝐴) → (𝑃 (𝑅𝑏)) ∈ 𝐵)
173, 14, 13, 16syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅𝑏)) ∈ 𝐵)
183hllatd 39364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐾 ∈ Lat)
19 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑁𝑇)
207, 8atbase 39289 . . . . . . 7 (𝑃𝐴𝑃𝐵)
2114, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝑃𝐵)
227, 9, 10ltrncl 40126 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇𝑃𝐵) → (𝑁𝑃) ∈ 𝐵)
234, 19, 21, 22syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑁𝑃) ∈ 𝐵)
24 simp21 1207 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐹𝑇)
259, 10ltrncnv 40147 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
264, 24, 25syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐹𝑇)
279, 10ltrnco 40720 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇𝐹𝑇) → (𝑏𝐹) ∈ 𝑇)
284, 5, 26, 27syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑏𝐹) ∈ 𝑇)
297, 9, 10, 11trlcl 40165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑏𝐹) ∈ 𝑇) → (𝑅‘(𝑏𝐹)) ∈ 𝐵)
304, 28, 29syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅‘(𝑏𝐹)) ∈ 𝐵)
317, 15latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑁𝑃) ∈ 𝐵 ∧ (𝑅‘(𝑏𝐹)) ∈ 𝐵) → ((𝑁𝑃) (𝑅‘(𝑏𝐹))) ∈ 𝐵)
3218, 23, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑁𝑃) (𝑅‘(𝑏𝐹))) ∈ 𝐵)
33 cdlemk5.l . . . . . 6 = (le‘𝐾)
3433, 15, 8hlatlej2 39376 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝑏) ∈ 𝐴) → (𝑅𝑏) (𝑃 (𝑅𝑏)))
353, 14, 13, 34syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) (𝑃 (𝑅𝑏)))
36 cdlemk5.m . . . . 5 = (meet‘𝐾)
377, 33, 15, 36, 8atmod2i1 39862 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅𝑏) ∈ 𝐴 ∧ (𝑃 (𝑅𝑏)) ∈ 𝐵 ∧ ((𝑁𝑃) (𝑅‘(𝑏𝐹))) ∈ 𝐵) ∧ (𝑅𝑏) (𝑃 (𝑅𝑏))) → (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏)) = ((𝑃 (𝑅𝑏)) (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏))))
383, 13, 17, 32, 35, 37syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏)) = ((𝑃 (𝑅𝑏)) (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏))))
397, 8atbase 39289 . . . . . . . 8 ((𝑅𝑏) ∈ 𝐴 → (𝑅𝑏) ∈ 𝐵)
4013, 39syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑏) ∈ 𝐵)
417, 9, 10, 11trlcl 40165 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ 𝐵)
424, 19, 41syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝑁) ∈ 𝐵)
437, 15latj32 18451 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑅𝑏) ∈ 𝐵 ∧ (𝑅𝑁) ∈ 𝐵)) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = ((𝑃 (𝑅𝑁)) (𝑅𝑏)))
4418, 21, 40, 42, 43syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = ((𝑃 (𝑅𝑁)) (𝑅𝑏)))
45 simp3l 1202 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4633, 15, 8, 9, 10, 11trljat3 40169 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑁)) = ((𝑁𝑃) (𝑅𝑁)))
474, 19, 45, 46syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑃 (𝑅𝑁)) = ((𝑁𝑃) (𝑅𝑁)))
4847oveq1d 7405 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑁)) (𝑅𝑏)) = (((𝑁𝑃) (𝑅𝑁)) (𝑅𝑏)))
497, 15latjass 18449 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑁𝑃) ∈ 𝐵 ∧ (𝑅𝑁) ∈ 𝐵 ∧ (𝑅𝑏) ∈ 𝐵)) → (((𝑁𝑃) (𝑅𝑁)) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
5018, 23, 42, 40, 49syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑁𝑃) (𝑅𝑁)) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
5144, 48, 503eqtrd 2769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
527, 15latjass 18449 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑁𝑃) ∈ 𝐵 ∧ (𝑅‘(𝑏𝐹)) ∈ 𝐵 ∧ (𝑅𝑏) ∈ 𝐵)) → (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅‘(𝑏𝐹)) (𝑅𝑏))))
5318, 23, 30, 40, 52syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅‘(𝑏𝐹)) (𝑅𝑏))))
547, 15latjcom 18413 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑅𝑁) ∈ 𝐵 ∧ (𝑅𝑏) ∈ 𝐵) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅𝑏) (𝑅𝑁)))
5518, 42, 40, 54syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅𝑏) (𝑅𝑁)))
569, 10, 11trlcnv 40166 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
574, 24, 56syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) = (𝑅𝐹))
58 simp23 1209 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) = (𝑅𝑁))
5957, 58eqtrd 2765 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) = (𝑅𝑁))
6059oveq2d 7406 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑏) (𝑅𝐹)) = ((𝑅𝑏) (𝑅𝑁)))
6155, 60eqtr4d 2768 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅𝑏) (𝑅𝐹)))
6215, 9, 10, 11trljco 40741 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑏𝑇𝐹𝑇) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅𝑏) (𝑅𝐹)))
634, 5, 26, 62syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅𝑏) (𝑅𝐹)))
647, 15latjcom 18413 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑅𝑏) ∈ 𝐵 ∧ (𝑅‘(𝑏𝐹)) ∈ 𝐵) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅‘(𝑏𝐹)) (𝑅𝑏)))
6518, 40, 30, 64syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑏) (𝑅‘(𝑏𝐹))) = ((𝑅‘(𝑏𝐹)) (𝑅𝑏)))
6661, 63, 653eqtr2d 2771 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑅𝑁) (𝑅𝑏)) = ((𝑅‘(𝑏𝐹)) (𝑅𝑏)))
6766oveq2d 7406 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))) = ((𝑁𝑃) ((𝑅‘(𝑏𝐹)) (𝑅𝑏))))
6853, 67eqtr4d 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)) = ((𝑁𝑃) ((𝑅𝑁) (𝑅𝑏))))
6951, 68eqtr4d 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) (𝑅𝑁)) = (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏)))
7069oveq2d 7406 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) ((𝑃 (𝑅𝑏)) (𝑅𝑁))) = ((𝑃 (𝑅𝑏)) (((𝑁𝑃) (𝑅‘(𝑏𝐹))) (𝑅𝑏))))
717, 15, 36latabs2 18442 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝑏)) ∈ 𝐵 ∧ (𝑅𝑁) ∈ 𝐵) → ((𝑃 (𝑅𝑏)) ((𝑃 (𝑅𝑏)) (𝑅𝑁))) = (𝑃 (𝑅𝑏)))
7218, 17, 42, 71syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → ((𝑃 (𝑅𝑏)) ((𝑃 (𝑅𝑏)) (𝑅𝑁))) = (𝑃 (𝑅𝑏)))
7338, 70, 723eqtr2d 2771 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
742, 73eqtrid 2777 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110   I cid 5535  ccnv 5640  cres 5643  ccom 5645  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Latclat 18397  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  cdlemkid2  40925
  Copyright terms: Public domain W3C validator