Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkid1 Structured version   Visualization version   GIF version

Theorem cdlemkid1 39781
Description: Lemma for cdlemkid 39795. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐡 = (Baseβ€˜πΎ)
cdlemk5.l ≀ = (leβ€˜πΎ)
cdlemk5.j ∨ = (joinβ€˜πΎ)
cdlemk5.m ∧ = (meetβ€˜πΎ)
cdlemk5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk5.h 𝐻 = (LHypβ€˜πΎ)
cdlemk5.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk5.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk5.z 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
Assertion
Ref Expression
cdlemkid1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝑍 ∨ (π‘…β€˜π‘)) = (𝑃 ∨ (π‘…β€˜π‘)))

Proof of Theorem cdlemkid1
StepHypRef Expression
1 cdlemk5.z . . 3 𝑍 = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))))
21oveq1i 7415 . 2 (𝑍 ∨ (π‘…β€˜π‘)) = (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜π‘))
3 simp1l 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝐾 ∈ HL)
4 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
5 simp3rl 1246 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑏 ∈ 𝑇)
6 simp3rr 1247 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑏 β‰  ( I β†Ύ 𝐡))
7 cdlemk5.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
8 cdlemk5.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
9 cdlemk5.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
10 cdlemk5.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
11 cdlemk5.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
127, 8, 9, 10, 11trlnidat 39032 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)) β†’ (π‘…β€˜π‘) ∈ 𝐴)
134, 5, 6, 12syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜π‘) ∈ 𝐴)
14 simp3ll 1244 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑃 ∈ 𝐴)
15 cdlemk5.j . . . . . 6 ∨ = (joinβ€˜πΎ)
167, 15, 8hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜π‘) ∈ 𝐴) β†’ (𝑃 ∨ (π‘…β€˜π‘)) ∈ 𝐡)
173, 14, 13, 16syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝑃 ∨ (π‘…β€˜π‘)) ∈ 𝐡)
183hllatd 38222 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝐾 ∈ Lat)
19 simp22 1207 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑁 ∈ 𝑇)
207, 8atbase 38147 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
2114, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑃 ∈ 𝐡)
227, 9, 10ltrncl 38984 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑁 ∈ 𝑇 ∧ 𝑃 ∈ 𝐡) β†’ (π‘β€˜π‘ƒ) ∈ 𝐡)
234, 19, 21, 22syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘β€˜π‘ƒ) ∈ 𝐡)
24 simp21 1206 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ 𝐹 ∈ 𝑇)
259, 10ltrncnv 39005 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ◑𝐹 ∈ 𝑇)
264, 24, 25syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ◑𝐹 ∈ 𝑇)
279, 10ltrnco 39578 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑏 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) β†’ (𝑏 ∘ ◑𝐹) ∈ 𝑇)
284, 5, 26, 27syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝑏 ∘ ◑𝐹) ∈ 𝑇)
297, 9, 10, 11trlcl 39023 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑏 ∘ ◑𝐹) ∈ 𝑇) β†’ (π‘…β€˜(𝑏 ∘ ◑𝐹)) ∈ 𝐡)
304, 28, 29syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜(𝑏 ∘ ◑𝐹)) ∈ 𝐡)
317, 15latjcl 18388 . . . . 5 ((𝐾 ∈ Lat ∧ (π‘β€˜π‘ƒ) ∈ 𝐡 ∧ (π‘…β€˜(𝑏 ∘ ◑𝐹)) ∈ 𝐡) β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∈ 𝐡)
3218, 23, 30, 31syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∈ 𝐡)
33 cdlemk5.l . . . . . 6 ≀ = (leβ€˜πΎ)
3433, 15, 8hlatlej2 38234 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜π‘) ∈ 𝐴) β†’ (π‘…β€˜π‘) ≀ (𝑃 ∨ (π‘…β€˜π‘)))
353, 14, 13, 34syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜π‘) ≀ (𝑃 ∨ (π‘…β€˜π‘)))
36 cdlemk5.m . . . . 5 ∧ = (meetβ€˜πΎ)
377, 33, 15, 36, 8atmod2i1 38720 . . . 4 ((𝐾 ∈ HL ∧ ((π‘…β€˜π‘) ∈ 𝐴 ∧ (𝑃 ∨ (π‘…β€˜π‘)) ∈ 𝐡 ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∈ 𝐡) ∧ (π‘…β€˜π‘) ≀ (𝑃 ∨ (π‘…β€˜π‘))) β†’ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜π‘)) = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘))))
383, 13, 17, 32, 35, 37syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜π‘)) = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘))))
397, 8atbase 38147 . . . . . . . 8 ((π‘…β€˜π‘) ∈ 𝐴 β†’ (π‘…β€˜π‘) ∈ 𝐡)
4013, 39syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜π‘) ∈ 𝐡)
417, 9, 10, 11trlcl 39023 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑁 ∈ 𝑇) β†’ (π‘…β€˜π‘) ∈ 𝐡)
424, 19, 41syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜π‘) ∈ 𝐡)
437, 15latj32 18434 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡)) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)))
4418, 21, 40, 42, 43syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)))
45 simp3l 1201 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
4633, 15, 8, 9, 10, 11trljat3 39027 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜π‘)))
474, 19, 45, 46syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝑃 ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜π‘)))
4847oveq1d 7420 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)))
497, 15latjass 18432 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((π‘β€˜π‘ƒ) ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡)) β†’ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘))))
5018, 23, 42, 40, 49syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘))))
5144, 48, 503eqtrd 2776 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘))))
527, 15latjass 18432 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((π‘β€˜π‘ƒ) ∈ 𝐡 ∧ (π‘…β€˜(𝑏 ∘ ◑𝐹)) ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡)) β†’ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜(𝑏 ∘ ◑𝐹)) ∨ (π‘…β€˜π‘))))
5318, 23, 30, 40, 52syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜(𝑏 ∘ ◑𝐹)) ∨ (π‘…β€˜π‘))))
547, 15latjcom 18396 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (π‘…β€˜π‘) ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)) = ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)))
5518, 42, 40, 54syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)) = ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)))
569, 10, 11trlcnv 39024 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
574, 24, 56syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜πΉ))
58 simp23 1208 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
5957, 58eqtrd 2772 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜β—‘πΉ) = (π‘…β€˜π‘))
6059oveq2d 7421 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜β—‘πΉ)) = ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)))
6155, 60eqtr4d 2775 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)) = ((π‘…β€˜π‘) ∨ (π‘…β€˜β—‘πΉ)))
6215, 9, 10, 11trljco 39599 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑏 ∈ 𝑇 ∧ ◑𝐹 ∈ 𝑇) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) = ((π‘…β€˜π‘) ∨ (π‘…β€˜β—‘πΉ)))
634, 5, 26, 62syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) = ((π‘…β€˜π‘) ∨ (π‘…β€˜β—‘πΉ)))
647, 15latjcom 18396 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (π‘…β€˜π‘) ∈ 𝐡 ∧ (π‘…β€˜(𝑏 ∘ ◑𝐹)) ∈ 𝐡) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) = ((π‘…β€˜(𝑏 ∘ ◑𝐹)) ∨ (π‘…β€˜π‘)))
6518, 40, 30, 64syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) = ((π‘…β€˜(𝑏 ∘ ◑𝐹)) ∨ (π‘…β€˜π‘)))
6661, 63, 653eqtr2d 2778 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘)) = ((π‘…β€˜(𝑏 ∘ ◑𝐹)) ∨ (π‘…β€˜π‘)))
6766oveq2d 7421 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘))) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜(𝑏 ∘ ◑𝐹)) ∨ (π‘…β€˜π‘))))
6853, 67eqtr4d 2775 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘)) = ((π‘β€˜π‘ƒ) ∨ ((π‘…β€˜π‘) ∨ (π‘…β€˜π‘))))
6951, 68eqtr4d 2775 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘)) = (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘)))
7069oveq2d 7421 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘))) = ((𝑃 ∨ (π‘…β€˜π‘)) ∧ (((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹))) ∨ (π‘…β€˜π‘))))
717, 15, 36latabs2 18425 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∨ (π‘…β€˜π‘)) ∈ 𝐡 ∧ (π‘…β€˜π‘) ∈ 𝐡) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘))) = (𝑃 ∨ (π‘…β€˜π‘)))
7218, 17, 42, 71syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((𝑃 ∨ (π‘…β€˜π‘)) ∨ (π‘…β€˜π‘))) = (𝑃 ∨ (π‘…β€˜π‘)))
7338, 70, 723eqtr2d 2778 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (((𝑃 ∨ (π‘…β€˜π‘)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑏 ∘ ◑𝐹)))) ∨ (π‘…β€˜π‘)) = (𝑃 ∨ (π‘…β€˜π‘)))
742, 73eqtrid 2784 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑏 ∈ 𝑇 ∧ 𝑏 β‰  ( I β†Ύ 𝐡)))) β†’ (𝑍 ∨ (π‘…β€˜π‘)) = (𝑃 ∨ (π‘…β€˜π‘)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147   I cid 5572  β—‘ccnv 5674   β†Ύ cres 5677   ∘ ccom 5679  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  cdlemkid2  39783
  Copyright terms: Public domain W3C validator