Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs29clN Structured version   Visualization version   GIF version

Theorem cdlemefs29clN 39944
Description: Show closure of the unique element in cdleme29c 39901. (Contributed by NM, 27-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefs32.b 𝐡 = (Baseβ€˜πΎ)
cdlemefs32.l ≀ = (leβ€˜πΎ)
cdlemefs32.j ∨ = (joinβ€˜πΎ)
cdlemefs32.m ∧ = (meetβ€˜πΎ)
cdlemefs32.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefs32.h 𝐻 = (LHypβ€˜πΎ)
cdlemefs32.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemefs32.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs32.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemefs32.i 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸))
cdlemefs32.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
cdlemefs29cl.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))))
Assertion
Ref Expression
cdlemefs29clN ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑂 ∈ 𝐡)
Distinct variable groups:   𝑑,𝑠,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,𝑦,𝑧   𝑦,𝐷   𝑦,𝐸   𝐻,𝑠,𝑑,𝑦   ∨ ,𝑠,𝑑,𝑦,𝑧   𝐾,𝑠,𝑑,𝑦   ≀ ,𝑠,𝑑,𝑦,𝑧   ∧ ,𝑠,𝑑,𝑦,𝑧   𝑧,𝑁   𝑃,𝑠,𝑑,𝑦,𝑧   𝑄,𝑠,𝑑,𝑦,𝑧   𝑅,𝑠,𝑑,𝑦   𝑑,π‘ˆ,𝑦   π‘Š,𝑠,𝑑,𝑦,𝑧   𝐷,𝑠   𝑧,𝐻   𝑧,𝐾   𝑧,𝑅
Allowed substitution hints:   𝐢(𝑦,𝑧,𝑑,𝑠)   𝐷(𝑧,𝑑)   π‘ˆ(𝑧,𝑠)   𝐸(𝑧,𝑑,𝑠)   𝐼(𝑦,𝑧,𝑑,𝑠)   𝑁(𝑦,𝑑,𝑠)   𝑂(𝑦,𝑧,𝑑,𝑠)

Proof of Theorem cdlemefs29clN
StepHypRef Expression
1 cdlemefs32.b . 2 𝐡 = (Baseβ€˜πΎ)
2 cdlemefs32.l . 2 ≀ = (leβ€˜πΎ)
3 cdlemefs32.j . 2 ∨ = (joinβ€˜πΎ)
4 cdlemefs32.m . 2 ∧ = (meetβ€˜πΎ)
5 cdlemefs32.a . 2 𝐴 = (Atomsβ€˜πΎ)
6 cdlemefs32.h . 2 𝐻 = (LHypβ€˜πΎ)
7 breq1 5147 . 2 (𝑠 = 𝑅 β†’ (𝑠 ≀ (𝑃 ∨ 𝑄) ↔ 𝑅 ≀ (𝑃 ∨ 𝑄)))
8 simp1 1133 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
9 simp3l 1198 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑠 ∈ 𝐴)
10 simp3rl 1243 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ Β¬ 𝑠 ≀ π‘Š)
119, 10jca 510 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š))
12 simp3rr 1244 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑠 ≀ (𝑃 ∨ 𝑄))
13 simp2 1134 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 β‰  𝑄)
14 cdlemefs32.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
15 cdlemefs32.d . . . 4 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
16 cdlemefs32.e . . . 4 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
17 cdlemefs32.i . . . 4 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸))
18 cdlemefs32.n . . . 4 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
191, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18cdlemefs27cl 39938 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 ∈ 𝐡)
208, 11, 12, 13, 19syl13anc 1369 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑁 ∈ 𝐡)
211, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18cdlemefs32snb 39940 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ⦋𝑅 / π‘ β¦Œπ‘ ∈ 𝐡)
22 cdlemefs29cl.o . 2 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))))
231, 2, 3, 4, 5, 6, 7, 20, 21, 22cdlemefrs29clN 39924 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑂 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  ifcif 4525   class class class wbr 5144  β€˜cfv 6543  β„©crio 7368  (class class class)co 7413  Basecbs 17174  lecple 17234  joincjn 18297  meetcmee 18298  Atomscatm 38787  HLchlt 38874  LHypclh 39509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-riotaBAD 38477
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-undef 8272  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-p1 18412  df-lat 18418  df-clat 18485  df-oposet 38700  df-ol 38702  df-oml 38703  df-covers 38790  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875  df-llines 39023  df-lplanes 39024  df-lvols 39025  df-lines 39026  df-psubsp 39028  df-pmap 39029  df-padd 39321  df-lhyp 39513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator