Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11a Structured version   Visualization version   GIF version

Theorem cdleme11a 40243
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40253. (Contributed by NM, 12-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme11a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑆 𝑈) = (𝑆 𝑇))

Proof of Theorem cdleme11a
StepHypRef Expression
1 simp3rr 1246 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑈 (𝑆 𝑇))
2 simp1l 1196 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝐾 ∈ HL)
3 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp2l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑄𝐴𝑃𝑄))
6 cdleme11.l . . . . 5 = (le‘𝐾)
7 cdleme11.j . . . . 5 = (join‘𝐾)
8 cdleme11.m . . . . 5 = (meet‘𝐾)
9 cdleme11.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 cdleme11.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 cdleme11.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
126, 7, 8, 9, 10, 11lhpat2 40028 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
133, 4, 5, 12syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑈𝐴)
14 simp3rl 1245 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑇𝐴)
15 simp3ll 1243 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑆𝐴)
16 simp2ll 1239 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑃𝐴)
17 simp2rl 1241 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑄𝐴)
18 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
196, 7, 8, 9, 10, 11cdleme0c 40196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑈𝑆)
203, 16, 17, 18, 19syl121anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → 𝑈𝑆)
216, 7, 9hlatexchb1 39376 . . 3 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑇𝐴𝑆𝐴) ∧ 𝑈𝑆) → (𝑈 (𝑆 𝑇) ↔ (𝑆 𝑈) = (𝑆 𝑇)))
222, 13, 14, 15, 20, 21syl131anc 1382 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑈 (𝑆 𝑇) ↔ (𝑆 𝑈) = (𝑆 𝑇)))
231, 22mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑆 𝑈) = (𝑆 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  meetcmee 18370  Atomscatm 39245  HLchlt 39332  LHypclh 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971
This theorem is referenced by:  cdleme11c  40244
  Copyright terms: Public domain W3C validator