| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simpl2 1193 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 3 | | simpl3 1194 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 4 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
| 5 | | cdlemef46.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 6 | | cdlemef46.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 7 | | cdlemef46.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | | cdlemef46.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 9 | 5, 6, 7, 8 | cdlemb2 40043 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
| 10 | 1, 2, 3, 4, 9 | syl121anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
| 11 | | simp1 1137 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 12 | | simp2 1138 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑄) |
| 13 | | simp3l 1202 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → 𝑒 ∈ 𝐴) |
| 14 | | simp3rl 1247 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ 𝑊) |
| 15 | 13, 14 | jca 511 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) |
| 16 | | simp3rr 1248 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) |
| 17 | | cdlemef46.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 18 | | cdlemef46.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
| 19 | | cdlemef46.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 20 | | cdlemef46.d |
. . . . . . 7
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 21 | | cdlemefs46.e |
. . . . . . 7
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| 22 | | cdlemef46.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| 23 | 17, 5, 6, 18, 7, 8,
19, 20, 21, 22 | cdleme17d2 40497 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑃) = 𝑄) |
| 24 | 11, 12, 15, 16, 23 | syl121anc 1377 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → (𝐹‘𝑃) = 𝑄) |
| 25 | 24 | 3expia 1122 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → (𝐹‘𝑃) = 𝑄)) |
| 26 | 25 | expd 415 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑃) = 𝑄))) |
| 27 | 26 | rexlimdv 3153 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → (𝐹‘𝑃) = 𝑄)) |
| 28 | 10, 27 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐹‘𝑃) = 𝑄) |