Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17d3 Structured version   Visualization version   GIF version

Theorem cdleme17d3 39880
Description: TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b 𝐡 = (Baseβ€˜πΎ)
cdlemef46.l ≀ = (leβ€˜πΎ)
cdlemef46.j ∨ = (joinβ€˜πΎ)
cdlemef46.m ∧ = (meetβ€˜πΎ)
cdlemef46.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef46.h 𝐻 = (LHypβ€˜πΎ)
cdlemef46.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef46.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs46.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef46.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
Assertion
Ref Expression
cdleme17d3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑑)   𝐸(𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)

Proof of Theorem cdleme17d3
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
4 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 β‰  𝑄)
5 cdlemef46.l . . . 4 ≀ = (leβ€˜πΎ)
6 cdlemef46.j . . . 4 ∨ = (joinβ€˜πΎ)
7 cdlemef46.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
8 cdlemef46.h . . . 4 𝐻 = (LHypβ€˜πΎ)
95, 6, 7, 8cdlemb2 39425 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘’ ∈ 𝐴 (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))
101, 2, 3, 4, 9syl121anc 1372 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘’ ∈ 𝐴 (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))
11 simp1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
12 simp2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 β‰  𝑄)
13 simp3l 1198 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑒 ∈ 𝐴)
14 simp3rl 1243 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ Β¬ 𝑒 ≀ π‘Š)
1513, 14jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š))
16 simp3rr 1244 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄))
17 cdlemef46.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
18 cdlemef46.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
19 cdlemef46.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
20 cdlemef46.d . . . . . . 7 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
21 cdlemefs46.e . . . . . . 7 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
22 cdlemef46.f . . . . . . 7 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
2317, 5, 6, 18, 7, 8, 19, 20, 21, 22cdleme17d2 39879 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ Β¬ 𝑒 ≀ π‘Š)) ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
2411, 12, 15, 16, 23syl121anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)))) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
25243expia 1118 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ ((𝑒 ∈ 𝐴 ∧ (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄))) β†’ (πΉβ€˜π‘ƒ) = 𝑄))
2625expd 415 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝑒 ∈ 𝐴 β†’ ((Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘ƒ) = 𝑄)))
2726rexlimdv 3147 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (βˆƒπ‘’ ∈ 𝐴 (Β¬ 𝑒 ≀ π‘Š ∧ Β¬ 𝑒 ≀ (𝑃 ∨ 𝑄)) β†’ (πΉβ€˜π‘ƒ) = 𝑄))
2810, 27mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064  β¦‹csb 3888  ifcif 4523   class class class wbr 5141   ↦ cmpt 5224  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-riotaBAD 38336
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-undef 8259  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884  df-lines 38885  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372
This theorem is referenced by:  cdleme17d  39882
  Copyright terms: Public domain W3C validator