Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-base0 Structured version   Visualization version   GIF version

Theorem sn-base0 42465
Description: Avoid axioms in base0 17231 by using the discouraged df-base 17227. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sn-base0 ∅ = (Base‘∅)

Proof of Theorem sn-base0
StepHypRef Expression
1 df-base 17227 . 2 Base = Slot 1
21str0 17206 1 ∅ = (Base‘∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4308  cfv 6530  1c1 11128  Basecbs 17226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-slot 17199  df-base 17227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator