Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-base0 Structured version   Visualization version   GIF version

Theorem sn-base0 42483
Description: Avoid axioms in base0 17248 by using the discouraged df-base 17244. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sn-base0 ∅ = (Base‘∅)

Proof of Theorem sn-base0
StepHypRef Expression
1 df-base 17244 . 2 Base = Slot 1
21str0 17222 1 ∅ = (Base‘∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4332  cfv 6559  1c1 11152  Basecbs 17243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-iota 6512  df-fun 6561  df-fv 6567  df-slot 17215  df-base 17244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator