Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version |
Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
base0 | ⊢ ∅ = (Base‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 16843 | . 2 ⊢ Base = Slot (Base‘ndx) | |
2 | 1 | str0 16818 | 1 ⊢ ∅ = (Base‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 ‘cfv 6418 ndxcnx 16822 Basecbs 16840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 |
This theorem is referenced by: elbasfv 16846 elbasov 16847 ressbas 16873 ressbasss 16876 ress0 16879 0cat 17315 oppcbas 17345 oppcbasOLD 17346 fucbas 17593 xpcbas 17811 xpchomfval 17812 xpccofval 17815 0pos 17954 0posOLD 17955 join0 18038 meet0 18039 oduclatb 18140 isipodrs 18170 0g0 18263 frmdplusg 18408 efmndbas 18425 efmndbasabf 18426 efmndplusg 18434 grpn0 18526 grpinvfvi 18537 mulgfvi 18621 psgnfval 19023 subcmn 19353 invrfval 19830 00lss 20118 00lsp 20158 thlbas 20813 dsmmfi 20855 asclfval 20993 psrbas 21057 psrplusg 21060 psrmulr 21063 resspsrbas 21094 opsrle 21158 00ply1bas 21321 ply1basfvi 21322 ply1plusgfvi 21323 matbas0pc 21466 matbas0 21467 matrcl 21469 mdetfval 21643 madufval 21694 mdegfval 25132 uc1pval 25209 mon1pval 25211 dchrrcl 26293 vtxval0 27312 submomnd 31238 suborng 31416 mendbas 40925 mendplusgfval 40926 mendmulrfval 40928 mendvscafval 40931 ipolub00 46167 0thinc 46220 |
Copyright terms: Public domain | W3C validator |