| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version | ||
| Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| base0 | ⊢ ∅ = (Base‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17120 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | 1 | str0 17097 | 1 ⊢ ∅ = (Base‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 ‘cfv 6481 ndxcnx 17101 Basecbs 17117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 |
| This theorem is referenced by: elbasfv 17123 elbasov 17124 ressbas 17144 ressbasssg 17145 ressbasssOLD 17148 ress0 17151 0cat 17592 oppcbas 17621 fucbas 17867 xpcbas 18081 xpchomfval 18082 xpccofval 18085 0pos 18224 join0 18306 meet0 18307 oduclatb 18410 isipodrs 18440 0g0 18569 frmdplusg 18759 efmndbas 18776 efmndbasabf 18777 efmndplusg 18785 grpn0 18881 grpinvfvi 18892 mulgfvi 18983 psgnfval 19410 subcmn 19747 submomnd 20042 invrfval 20305 suborng 20789 00lss 20872 00lsp 20912 thlbas 21631 dsmmfi 21673 asclfval 21814 psrbas 21868 psrplusg 21871 psrmulr 21877 resspsrbas 21909 opsrle 21980 00ply1bas 22150 ply1basfvi 22151 ply1plusgfvi 22152 matbas0pc 22322 matbas0 22323 matrcl 22325 mdetfval 22499 madufval 22550 mdegfval 25992 uc1pval 26070 mon1pval 26072 dchrrcl 27176 vtxval0 29015 fracbas 33266 mendbas 43212 mendplusgfval 43213 mendmulrfval 43215 mendvscafval 43218 ipolub00 49023 0func 49118 0funcALT 49119 initc 49122 0thinc 49490 initocmd 49700 termolmd 49701 |
| Copyright terms: Public domain | W3C validator |