![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version |
Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
base0 | ⊢ ∅ = (Base‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 16261 | . 2 ⊢ Base = Slot 1 | |
2 | 1 | str0 16307 | 1 ⊢ ∅ = (Base‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∅c0 4141 ‘cfv 6135 1c1 10273 Basecbs 16255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-slot 16259 df-base 16261 |
This theorem is referenced by: elbasfv 16316 elbasov 16317 ressbasss 16328 ress0 16330 0cat 16734 oppcbas 16763 fucbas 17005 xpcbas 17204 xpchomfval 17205 xpccofval 17208 0pos 17340 meet0 17523 join0 17524 oduclatb 17530 isipodrs 17547 0g0 17649 frmdplusg 17778 grpn0 17841 grpinvfvi 17850 mulgfvi 17932 symgbas 18183 symgplusg 18192 psgnfval 18304 subcmn 18628 invrfval 19060 scaffval 19273 00lss 19334 00lsp 19376 asclfval 19731 psrbas 19775 psrplusg 19778 psrmulr 19781 resspsrbas 19812 opsrle 19872 00ply1bas 20006 ply1basfvi 20007 ply1plusgfvi 20008 thlbas 20439 dsmmbas2 20480 dsmmfi 20481 matbas0pc 20619 matbas0 20620 matrcl 20622 mdetfval 20797 madufval 20848 mdegfval 24259 uc1pval 24336 mon1pval 24338 dchrrcl 25417 vtxval0 26387 submomnd 30272 suborng 30377 mendbas 38713 mendplusgfval 38714 mendmulrfval 38716 mendvscafval 38719 |
Copyright terms: Public domain | W3C validator |