|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version | ||
| Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| base0 | ⊢ ∅ = (Base‘∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | baseid 17251 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | 1 | str0 17227 | 1 ⊢ ∅ = (Base‘∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ∅c0 4332 ‘cfv 6560 ndxcnx 17231 Basecbs 17248 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-1cn 11214 ax-addcl 11216 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-nn 12268 df-slot 17220 df-ndx 17232 df-base 17249 | 
| This theorem is referenced by: elbasfv 17254 elbasov 17255 ressbas 17281 ressbasssg 17283 ressbasssOLD 17286 ress0 17290 0cat 17733 oppcbas 17762 fucbas 18009 xpcbas 18224 xpchomfval 18225 xpccofval 18228 0pos 18368 join0 18451 meet0 18452 oduclatb 18553 isipodrs 18583 0g0 18678 frmdplusg 18868 efmndbas 18885 efmndbasabf 18886 efmndplusg 18894 grpn0 18990 grpinvfvi 19001 mulgfvi 19092 psgnfval 19519 subcmn 19856 invrfval 20390 00lss 20940 00lsp 20980 thlbas 21715 thlbasOLD 21716 dsmmfi 21759 asclfval 21900 psrbas 21954 psrplusg 21957 psrmulr 21963 resspsrbas 21995 opsrle 22066 00ply1bas 22242 ply1basfvi 22243 ply1plusgfvi 22244 matbas0pc 22414 matbas0 22415 matrcl 22417 mdetfval 22593 madufval 22644 mdegfval 26102 uc1pval 26180 mon1pval 26182 dchrrcl 27285 vtxval0 29057 submomnd 33088 fracbas 33308 suborng 33346 mendbas 43197 mendplusgfval 43198 mendmulrfval 43200 mendvscafval 43203 ipolub00 48897 0func 48936 0funcALT 48937 0thinc 49133 | 
| Copyright terms: Public domain | W3C validator |