| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version | ||
| Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| base0 | ⊢ ∅ = (Base‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17182 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | 1 | str0 17159 | 1 ⊢ ∅ = (Base‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 ‘cfv 6511 ndxcnx 17163 Basecbs 17179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 |
| This theorem is referenced by: elbasfv 17185 elbasov 17186 ressbas 17206 ressbasssg 17207 ressbasssOLD 17210 ress0 17213 0cat 17650 oppcbas 17679 fucbas 17925 xpcbas 18139 xpchomfval 18140 xpccofval 18143 0pos 18282 join0 18364 meet0 18365 oduclatb 18466 isipodrs 18496 0g0 18591 frmdplusg 18781 efmndbas 18798 efmndbasabf 18799 efmndplusg 18807 grpn0 18903 grpinvfvi 18914 mulgfvi 19005 psgnfval 19430 subcmn 19767 invrfval 20298 00lss 20847 00lsp 20887 thlbas 21605 dsmmfi 21647 asclfval 21788 psrbas 21842 psrplusg 21845 psrmulr 21851 resspsrbas 21883 opsrle 21954 00ply1bas 22124 ply1basfvi 22125 ply1plusgfvi 22126 matbas0pc 22296 matbas0 22297 matrcl 22299 mdetfval 22473 madufval 22524 mdegfval 25967 uc1pval 26045 mon1pval 26047 dchrrcl 27151 vtxval0 28966 submomnd 33024 fracbas 33255 suborng 33293 mendbas 43169 mendplusgfval 43170 mendmulrfval 43172 mendvscafval 43175 ipolub00 48981 0func 49076 0funcALT 49077 initc 49080 0thinc 49448 initocmd 49658 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |