| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version | ||
| Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| base0 | ⊢ ∅ = (Base‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17141 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | 1 | str0 17118 | 1 ⊢ ∅ = (Base‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 ‘cfv 6486 ndxcnx 17122 Basecbs 17138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 |
| This theorem is referenced by: elbasfv 17144 elbasov 17145 ressbas 17165 ressbasssg 17166 ressbasssOLD 17169 ress0 17172 0cat 17613 oppcbas 17642 fucbas 17888 xpcbas 18102 xpchomfval 18103 xpccofval 18106 0pos 18245 join0 18327 meet0 18328 oduclatb 18431 isipodrs 18461 0g0 18556 frmdplusg 18746 efmndbas 18763 efmndbasabf 18764 efmndplusg 18772 grpn0 18868 grpinvfvi 18879 mulgfvi 18970 psgnfval 19397 subcmn 19734 submomnd 20029 invrfval 20292 suborng 20779 00lss 20862 00lsp 20902 thlbas 21621 dsmmfi 21663 asclfval 21804 psrbas 21858 psrplusg 21861 psrmulr 21867 resspsrbas 21899 opsrle 21970 00ply1bas 22140 ply1basfvi 22141 ply1plusgfvi 22142 matbas0pc 22312 matbas0 22313 matrcl 22315 mdetfval 22489 madufval 22540 mdegfval 25983 uc1pval 26061 mon1pval 26063 dchrrcl 27167 vtxval0 29002 fracbas 33254 mendbas 43153 mendplusgfval 43154 mendmulrfval 43156 mendvscafval 43159 ipolub00 48978 0func 49073 0funcALT 49074 initc 49077 0thinc 49445 initocmd 49655 termolmd 49656 |
| Copyright terms: Public domain | W3C validator |