| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version | ||
| Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| base0 | ⊢ ∅ = (Base‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17125 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | 1 | str0 17102 | 1 ⊢ ∅ = (Base‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 ‘cfv 6486 ndxcnx 17106 Basecbs 17122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 |
| This theorem is referenced by: elbasfv 17128 elbasov 17129 ressbas 17149 ressbasssg 17150 ressbasssOLD 17153 ress0 17156 0cat 17597 oppcbas 17626 fucbas 17872 xpcbas 18086 xpchomfval 18087 xpccofval 18090 0pos 18229 join0 18311 meet0 18312 oduclatb 18415 isipodrs 18445 0g0 18574 frmdplusg 18764 efmndbas 18781 efmndbasabf 18782 efmndplusg 18790 grpn0 18886 grpinvfvi 18897 mulgfvi 18988 psgnfval 19414 subcmn 19751 submomnd 20046 invrfval 20309 suborng 20793 00lss 20876 00lsp 20916 thlbas 21635 dsmmfi 21677 asclfval 21818 psrbas 21872 psrplusg 21875 psrmulr 21881 resspsrbas 21912 opsrle 21983 00ply1bas 22153 ply1basfvi 22154 ply1plusgfvi 22155 matbas0pc 22325 matbas0 22326 matrcl 22328 mdetfval 22502 madufval 22553 mdegfval 25995 uc1pval 26073 mon1pval 26075 dchrrcl 27179 vtxval0 29019 fracbas 33278 mendbas 43297 mendplusgfval 43298 mendmulrfval 43300 mendvscafval 43303 ipolub00 49117 0func 49212 0funcALT 49213 initc 49216 0thinc 49584 initocmd 49794 termolmd 49795 |
| Copyright terms: Public domain | W3C validator |