![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version |
Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
base0 | ⊢ ∅ = (Base‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17261 | . 2 ⊢ Base = Slot (Base‘ndx) | |
2 | 1 | str0 17236 | 1 ⊢ ∅ = (Base‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 ‘cfv 6573 ndxcnx 17240 Basecbs 17258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 |
This theorem is referenced by: elbasfv 17264 elbasov 17265 ressbas 17293 ressbasssg 17295 ressbasssOLD 17298 ress0 17302 0cat 17747 oppcbas 17777 oppcbasOLD 17778 fucbas 18029 xpcbas 18247 xpchomfval 18248 xpccofval 18251 0pos 18391 0posOLD 18392 join0 18475 meet0 18476 oduclatb 18577 isipodrs 18607 0g0 18702 frmdplusg 18889 efmndbas 18906 efmndbasabf 18907 efmndplusg 18915 grpn0 19011 grpinvfvi 19022 mulgfvi 19113 psgnfval 19542 subcmn 19879 invrfval 20415 00lss 20962 00lsp 21002 thlbas 21737 thlbasOLD 21738 dsmmfi 21781 asclfval 21922 psrbas 21976 psrplusg 21979 psrmulr 21985 resspsrbas 22017 opsrle 22088 00ply1bas 22262 ply1basfvi 22263 ply1plusgfvi 22264 matbas0pc 22434 matbas0 22435 matrcl 22437 mdetfval 22613 madufval 22664 mdegfval 26121 uc1pval 26199 mon1pval 26201 dchrrcl 27302 vtxval0 29074 submomnd 33060 fracbas 33272 suborng 33310 mendbas 43141 mendplusgfval 43142 mendmulrfval 43144 mendvscafval 43147 ipolub00 48665 0thinc 48718 |
Copyright terms: Public domain | W3C validator |