| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version | ||
| Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| base0 | ⊢ ∅ = (Base‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baseid 17236 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 2 | 1 | str0 17213 | 1 ⊢ ∅ = (Base‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4313 ‘cfv 6536 ndxcnx 17217 Basecbs 17233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-slot 17206 df-ndx 17218 df-base 17234 |
| This theorem is referenced by: elbasfv 17239 elbasov 17240 ressbas 17262 ressbasssg 17263 ressbasssOLD 17266 ress0 17269 0cat 17706 oppcbas 17735 fucbas 17981 xpcbas 18195 xpchomfval 18196 xpccofval 18199 0pos 18338 join0 18420 meet0 18421 oduclatb 18522 isipodrs 18552 0g0 18647 frmdplusg 18837 efmndbas 18854 efmndbasabf 18855 efmndplusg 18863 grpn0 18959 grpinvfvi 18970 mulgfvi 19061 psgnfval 19486 subcmn 19823 invrfval 20354 00lss 20903 00lsp 20943 thlbas 21661 dsmmfi 21703 asclfval 21844 psrbas 21898 psrplusg 21901 psrmulr 21907 resspsrbas 21939 opsrle 22010 00ply1bas 22180 ply1basfvi 22181 ply1plusgfvi 22182 matbas0pc 22352 matbas0 22353 matrcl 22355 mdetfval 22529 madufval 22580 mdegfval 26024 uc1pval 26102 mon1pval 26104 dchrrcl 27208 vtxval0 29023 submomnd 33083 fracbas 33304 suborng 33342 mendbas 43171 mendplusgfval 43172 mendmulrfval 43174 mendvscafval 43177 ipolub00 48934 0func 49019 0funcALT 49020 0thinc 49312 |
| Copyright terms: Public domain | W3C validator |