Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version |
Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
base0 | ⊢ ∅ = (Base‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 16915 | . 2 ⊢ Base = Slot (Base‘ndx) | |
2 | 1 | str0 16890 | 1 ⊢ ∅ = (Base‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 ‘cfv 6433 ndxcnx 16894 Basecbs 16912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 |
This theorem is referenced by: elbasfv 16918 elbasov 16919 ressbas 16947 ressbasss 16950 ress0 16953 0cat 17398 oppcbas 17428 oppcbasOLD 17429 fucbas 17677 xpcbas 17895 xpchomfval 17896 xpccofval 17899 0pos 18039 0posOLD 18040 join0 18123 meet0 18124 oduclatb 18225 isipodrs 18255 0g0 18348 frmdplusg 18493 efmndbas 18510 efmndbasabf 18511 efmndplusg 18519 grpn0 18611 grpinvfvi 18622 mulgfvi 18706 psgnfval 19108 subcmn 19438 invrfval 19915 00lss 20203 00lsp 20243 thlbas 20901 thlbasOLD 20902 dsmmfi 20945 asclfval 21083 psrbas 21147 psrplusg 21150 psrmulr 21153 resspsrbas 21184 opsrle 21248 00ply1bas 21411 ply1basfvi 21412 ply1plusgfvi 21413 matbas0pc 21556 matbas0 21557 matrcl 21559 mdetfval 21735 madufval 21786 mdegfval 25227 uc1pval 25304 mon1pval 25306 dchrrcl 26388 vtxval0 27409 submomnd 31336 suborng 31514 mendbas 41009 mendplusgfval 41010 mendmulrfval 41012 mendvscafval 41015 ipolub00 46279 0thinc 46332 |
Copyright terms: Public domain | W3C validator |