Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > base0 | Structured version Visualization version GIF version |
Description: The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
base0 | ⊢ ∅ = (Base‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 16913 | . 2 ⊢ Base = Slot (Base‘ndx) | |
2 | 1 | str0 16888 | 1 ⊢ ∅ = (Base‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4262 ‘cfv 6432 ndxcnx 16892 Basecbs 16910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-1cn 10930 ax-addcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-slot 16881 df-ndx 16893 df-base 16911 |
This theorem is referenced by: elbasfv 16916 elbasov 16917 ressbas 16945 ressbasss 16948 ress0 16951 0cat 17396 oppcbas 17426 oppcbasOLD 17427 fucbas 17675 xpcbas 17893 xpchomfval 17894 xpccofval 17897 0pos 18037 0posOLD 18038 join0 18121 meet0 18122 oduclatb 18223 isipodrs 18253 0g0 18346 frmdplusg 18491 efmndbas 18508 efmndbasabf 18509 efmndplusg 18517 grpn0 18609 grpinvfvi 18620 mulgfvi 18704 psgnfval 19106 subcmn 19436 invrfval 19913 00lss 20201 00lsp 20241 thlbas 20899 thlbasOLD 20900 dsmmfi 20943 asclfval 21081 psrbas 21145 psrplusg 21148 psrmulr 21151 resspsrbas 21182 opsrle 21246 00ply1bas 21409 ply1basfvi 21410 ply1plusgfvi 21411 matbas0pc 21554 matbas0 21555 matrcl 21557 mdetfval 21733 madufval 21784 mdegfval 25225 uc1pval 25302 mon1pval 25304 dchrrcl 26386 vtxval0 27407 submomnd 31332 suborng 31510 mendbas 41006 mendplusgfval 41007 mendmulrfval 41009 mendvscafval 41012 ipolub00 46248 0thinc 46301 |
Copyright terms: Public domain | W3C validator |