Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5235 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 16898 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6810 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2769 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4262 ‘cfv 6432 Slot cslot 16893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-slot 16894 |
This theorem is referenced by: strfvi 16902 setsnid 16921 setsnidOLD 16922 base0 16928 resseqnbas 16962 resslemOLD 16963 oppchomfval 17434 oppchomfvalOLD 17435 fuchom 17689 fuchomOLD 17690 xpchomfval 17907 xpccofval 17910 oduleval 18018 0pos 18050 0posOLD 18051 frmdplusg 18504 efmndplusg 18530 oppgplusfval 18963 mgpplusg 19735 opprmulfval 19875 sralem 20450 sralemOLD 20451 srasca 20458 srascaOLD 20459 sravsca 20460 sravscaOLD 20461 sraip 20462 zlmlem 20729 zlmlemOLD 20730 zlmvsca 20738 thlle 20914 thlleOLD 20915 thloc 20917 psrplusg 21161 psrmulr 21164 psrvscafval 21170 opsrle 21259 ply1plusgfvi 21424 psr1sca2 21433 ply1sca2 21436 resstopn 22348 tnglem 23807 tnglemOLD 23808 tngds 23822 tngdsOLD 23823 ttglem 27249 ttglemOLD 27250 iedgval0 27421 resvlem 31539 resvlemOLD 31540 mendplusgfval 41019 mendmulrfval 41021 mendsca 41023 mendvscafval 41024 |
Copyright terms: Public domain | W3C validator |