Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 16815 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6795 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2767 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 ‘cfv 6418 Slot cslot 16810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-slot 16811 |
This theorem is referenced by: strfvi 16819 setsnid 16838 setsnidOLD 16839 base0 16845 resseqnbas 16877 resslemOLD 16878 oppchomfval 17340 oppchomfvalOLD 17341 fuchom 17594 fuchomOLD 17595 xpchomfval 17812 xpccofval 17815 oduleval 17923 0pos 17954 0posOLD 17955 frmdplusg 18408 efmndplusg 18434 oppgplusfval 18867 mgpplusg 19639 opprmulfval 19779 sralem 20354 sralemOLD 20355 srasca 20362 sravsca 20363 sraip 20364 zlmlem 20630 zlmlemOLD 20631 zlmvsca 20639 thlle 20814 thloc 20816 psrplusg 21060 psrmulr 21063 psrvscafval 21069 opsrle 21158 ply1plusgfvi 21323 psr1sca2 21332 ply1sca2 21335 resstopn 22245 tnglem 23702 tnglemOLD 23703 tngds 23717 tngdsOLD 23718 ttglem 27141 ttglemOLD 27142 iedgval0 27313 resvlem 31432 resvlemOLD 31433 mendplusgfval 40926 mendmulrfval 40928 mendsca 40930 mendvscafval 40931 |
Copyright terms: Public domain | W3C validator |