| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version | ||
| Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| str0.a | ⊢ 𝐹 = Slot 𝐼 |
| Ref | Expression |
|---|---|
| str0 | ⊢ ∅ = (𝐹‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
| 3 | 1, 2 | strfvn 17156 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
| 4 | 0fv 6902 | . 2 ⊢ (∅‘𝐼) = ∅ | |
| 5 | 3, 4 | eqtr2i 2753 | 1 ⊢ ∅ = (𝐹‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 ‘cfv 6511 Slot cslot 17151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-slot 17152 |
| This theorem is referenced by: strfvi 17160 setsnid 17178 base0 17184 resseqnbas 17212 oppchomfval 17675 fuchom 17926 xpchomfval 18140 xpccofval 18143 oduleval 18250 0pos 18282 frmdplusg 18781 efmndplusg 18807 oppgplusfval 19280 mgpplusg 20053 opprmulfval 20248 sralem 21083 srasca 21087 sravsca 21088 sraip 21089 zlmlem 21426 zlmvsca 21431 thlle 21606 thloc 21608 psrplusg 21845 psrmulr 21851 psrvscafval 21857 opsrle 21954 ply1plusgfvi 22126 psr1sca2 22135 ply1sca2 22138 resstopn 23073 tnglem 24528 tngds 24536 ttglem 28803 iedgval0 28967 resvlem 33305 sn-base0 42483 mendplusgfval 43170 mendmulrfval 43172 mendsca 43174 mendvscafval 43175 catcrcl 49384 |
| Copyright terms: Public domain | W3C validator |