![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5308 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 17119 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6936 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2762 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4323 ‘cfv 6544 Slot cslot 17114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-slot 17115 |
This theorem is referenced by: strfvi 17123 setsnid 17142 setsnidOLD 17143 base0 17149 resseqnbas 17186 resslemOLD 17187 oppchomfval 17658 oppchomfvalOLD 17659 fuchom 17913 fuchomOLD 17914 xpchomfval 18131 xpccofval 18134 oduleval 18242 0pos 18274 0posOLD 18275 frmdplusg 18735 efmndplusg 18761 oppgplusfval 19212 mgpplusg 19991 opprmulfval 20152 sralem 20790 sralemOLD 20791 srasca 20798 srascaOLD 20799 sravsca 20800 sravscaOLD 20801 sraip 20802 zlmlem 21066 zlmlemOLD 21067 zlmvsca 21075 thlle 21251 thlleOLD 21252 thloc 21254 psrplusg 21500 psrmulr 21503 psrvscafval 21509 opsrle 21602 ply1plusgfvi 21764 psr1sca2 21773 ply1sca2 21776 resstopn 22690 tnglem 24149 tnglemOLD 24150 tngds 24164 tngdsOLD 24165 ttglem 28128 ttglemOLD 28129 iedgval0 28300 resvlem 32445 resvlemOLD 32446 mendplusgfval 41927 mendmulrfval 41929 mendsca 41931 mendvscafval 41932 |
Copyright terms: Public domain | W3C validator |