Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 16887 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6813 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2767 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 ‘cfv 6433 Slot cslot 16882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-slot 16883 |
This theorem is referenced by: strfvi 16891 setsnid 16910 setsnidOLD 16911 base0 16917 resseqnbas 16951 resslemOLD 16952 oppchomfval 17423 oppchomfvalOLD 17424 fuchom 17678 fuchomOLD 17679 xpchomfval 17896 xpccofval 17899 oduleval 18007 0pos 18039 0posOLD 18040 frmdplusg 18493 efmndplusg 18519 oppgplusfval 18952 mgpplusg 19724 opprmulfval 19864 sralem 20439 sralemOLD 20440 srasca 20447 srascaOLD 20448 sravsca 20449 sravscaOLD 20450 sraip 20451 zlmlem 20718 zlmlemOLD 20719 zlmvsca 20727 thlle 20903 thlleOLD 20904 thloc 20906 psrplusg 21150 psrmulr 21153 psrvscafval 21159 opsrle 21248 ply1plusgfvi 21413 psr1sca2 21422 ply1sca2 21425 resstopn 22337 tnglem 23796 tnglemOLD 23797 tngds 23811 tngdsOLD 23812 ttglem 27238 ttglemOLD 27239 iedgval0 27410 resvlem 31530 resvlemOLD 31531 mendplusgfval 41010 mendmulrfval 41012 mendsca 41014 mendvscafval 41015 |
Copyright terms: Public domain | W3C validator |