![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 17220 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6951 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2764 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4339 ‘cfv 6563 Slot cslot 17215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-slot 17216 |
This theorem is referenced by: strfvi 17224 setsnid 17243 setsnidOLD 17244 base0 17250 resseqnbas 17287 resslemOLD 17288 oppchomfval 17759 oppchomfvalOLD 17760 fuchom 18017 fuchomOLD 18018 xpchomfval 18235 xpccofval 18238 oduleval 18346 0pos 18379 0posOLD 18380 frmdplusg 18880 efmndplusg 18906 oppgplusfval 19379 mgpplusg 20156 opprmulfval 20353 sralem 21193 sralemOLD 21194 srasca 21201 srascaOLD 21202 sravsca 21203 sravscaOLD 21204 sraip 21205 zlmlem 21545 zlmlemOLD 21546 zlmvsca 21554 thlle 21734 thlleOLD 21735 thloc 21737 psrplusg 21974 psrmulr 21980 psrvscafval 21986 opsrle 22083 ply1plusgfvi 22259 psr1sca2 22268 ply1sca2 22271 resstopn 23210 tnglem 24669 tnglemOLD 24670 tngds 24684 tngdsOLD 24685 ttglem 28900 ttglemOLD 28901 iedgval0 29072 resvlem 33337 resvlemOLD 33338 sn-base0 42482 mendplusgfval 43170 mendmulrfval 43172 mendsca 43174 mendvscafval 43175 |
Copyright terms: Public domain | W3C validator |