| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version | ||
| Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| str0.a | ⊢ 𝐹 = Slot 𝐼 |
| Ref | Expression |
|---|---|
| str0 | ⊢ ∅ = (𝐹‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
| 3 | 1, 2 | strfvn 17205 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
| 4 | 0fv 6920 | . 2 ⊢ (∅‘𝐼) = ∅ | |
| 5 | 3, 4 | eqtr2i 2759 | 1 ⊢ ∅ = (𝐹‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 ‘cfv 6531 Slot cslot 17200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-slot 17201 |
| This theorem is referenced by: strfvi 17209 setsnid 17227 base0 17233 resseqnbas 17263 oppchomfval 17726 fuchom 17977 xpchomfval 18191 xpccofval 18194 oduleval 18301 0pos 18333 frmdplusg 18832 efmndplusg 18858 oppgplusfval 19331 mgpplusg 20104 opprmulfval 20299 sralem 21134 srasca 21138 sravsca 21139 sraip 21140 zlmlem 21477 zlmvsca 21482 thlle 21657 thloc 21659 psrplusg 21896 psrmulr 21902 psrvscafval 21908 opsrle 22005 ply1plusgfvi 22177 psr1sca2 22186 ply1sca2 22189 resstopn 23124 tnglem 24579 tngds 24587 ttglem 28855 iedgval0 29019 resvlem 33349 sn-base0 42518 mendplusgfval 43205 mendmulrfval 43207 mendsca 43209 mendvscafval 43210 |
| Copyright terms: Public domain | W3C validator |