![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 17233 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6964 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2769 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 ‘cfv 6573 Slot cslot 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-slot 17229 |
This theorem is referenced by: strfvi 17237 setsnid 17256 setsnidOLD 17257 base0 17263 resseqnbas 17300 resslemOLD 17301 oppchomfval 17772 oppchomfvalOLD 17773 fuchom 18030 fuchomOLD 18031 xpchomfval 18248 xpccofval 18251 oduleval 18359 0pos 18391 0posOLD 18392 frmdplusg 18889 efmndplusg 18915 oppgplusfval 19388 mgpplusg 20165 opprmulfval 20362 sralem 21198 sralemOLD 21199 srasca 21206 srascaOLD 21207 sravsca 21208 sravscaOLD 21209 sraip 21210 zlmlem 21550 zlmlemOLD 21551 zlmvsca 21559 thlle 21739 thlleOLD 21740 thloc 21742 psrplusg 21979 psrmulr 21985 psrvscafval 21991 opsrle 22088 ply1plusgfvi 22264 psr1sca2 22273 ply1sca2 22276 resstopn 23215 tnglem 24674 tnglemOLD 24675 tngds 24689 tngdsOLD 24690 ttglem 28903 ttglemOLD 28904 iedgval0 29075 resvlem 33322 resvlemOLD 33323 mendplusgfval 43142 mendmulrfval 43144 mendsca 43146 mendvscafval 43147 |
Copyright terms: Public domain | W3C validator |