| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version | ||
| Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| str0.a | ⊢ 𝐹 = Slot 𝐼 |
| Ref | Expression |
|---|---|
| str0 | ⊢ ∅ = (𝐹‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
| 3 | 1, 2 | strfvn 17099 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
| 4 | 0fv 6869 | . 2 ⊢ (∅‘𝐼) = ∅ | |
| 5 | 3, 4 | eqtr2i 2757 | 1 ⊢ ∅ = (𝐹‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 ‘cfv 6486 Slot cslot 17094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-slot 17095 |
| This theorem is referenced by: strfvi 17103 setsnid 17121 base0 17127 resseqnbas 17155 oppchomfval 17622 fuchom 17873 xpchomfval 18087 xpccofval 18090 oduleval 18197 0pos 18229 frmdplusg 18764 efmndplusg 18790 oppgplusfval 19262 mgpplusg 20064 opprmulfval 20259 sralem 21112 srasca 21116 sravsca 21117 sraip 21118 zlmlem 21455 zlmvsca 21460 thlle 21636 thloc 21638 psrplusg 21875 psrmulr 21881 psrvscafval 21887 opsrle 21983 ply1plusgfvi 22155 psr1sca2 22164 ply1sca2 22167 resstopn 23102 tnglem 24556 tngds 24564 ttglem 28855 iedgval0 29020 resvlem 33305 sn-base0 42613 mendplusgfval 43298 mendmulrfval 43300 mendsca 43302 mendvscafval 43303 catcrcl 49520 |
| Copyright terms: Public domain | W3C validator |