![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 17118 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6935 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2761 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∅c0 4322 ‘cfv 6543 Slot cslot 17113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-slot 17114 |
This theorem is referenced by: strfvi 17122 setsnid 17141 setsnidOLD 17142 base0 17148 resseqnbas 17185 resslemOLD 17186 oppchomfval 17657 oppchomfvalOLD 17658 fuchom 17912 fuchomOLD 17913 xpchomfval 18130 xpccofval 18133 oduleval 18241 0pos 18273 0posOLD 18274 frmdplusg 18734 efmndplusg 18760 oppgplusfval 19211 mgpplusg 19990 opprmulfval 20151 sralem 20789 sralemOLD 20790 srasca 20797 srascaOLD 20798 sravsca 20799 sravscaOLD 20800 sraip 20801 zlmlem 21065 zlmlemOLD 21066 zlmvsca 21074 thlle 21250 thlleOLD 21251 thloc 21253 psrplusg 21499 psrmulr 21502 psrvscafval 21508 opsrle 21601 ply1plusgfvi 21763 psr1sca2 21772 ply1sca2 21775 resstopn 22689 tnglem 24148 tnglemOLD 24149 tngds 24163 tngdsOLD 24164 ttglem 28125 ttglemOLD 28126 iedgval0 28297 resvlem 32440 resvlemOLD 32441 mendplusgfval 41917 mendmulrfval 41919 mendsca 41921 mendvscafval 41922 |
Copyright terms: Public domain | W3C validator |