![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version |
Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
str0.a | ⊢ 𝐹 = Slot 𝐼 |
Ref | Expression |
---|---|
str0 | ⊢ ∅ = (𝐹‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
3 | 1, 2 | strfvn 17121 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
4 | 0fv 6935 | . 2 ⊢ (∅‘𝐼) = ∅ | |
5 | 3, 4 | eqtr2i 2761 | 1 ⊢ ∅ = (𝐹‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∅c0 4322 ‘cfv 6543 Slot cslot 17116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-slot 17117 |
This theorem is referenced by: strfvi 17125 setsnid 17144 setsnidOLD 17145 base0 17151 resseqnbas 17188 resslemOLD 17189 oppchomfval 17660 oppchomfvalOLD 17661 fuchom 17915 fuchomOLD 17916 xpchomfval 18133 xpccofval 18136 oduleval 18244 0pos 18276 0posOLD 18277 frmdplusg 18737 efmndplusg 18763 oppgplusfval 19214 mgpplusg 19993 opprmulfval 20156 sralem 20796 sralemOLD 20797 srasca 20804 srascaOLD 20805 sravsca 20806 sravscaOLD 20807 sraip 20808 zlmlem 21072 zlmlemOLD 21073 zlmvsca 21081 thlle 21257 thlleOLD 21258 thloc 21260 psrplusg 21506 psrmulr 21509 psrvscafval 21515 opsrle 21608 ply1plusgfvi 21771 psr1sca2 21780 ply1sca2 21783 resstopn 22697 tnglem 24156 tnglemOLD 24157 tngds 24171 tngdsOLD 24172 ttglem 28166 ttglemOLD 28167 iedgval0 28338 resvlem 32486 resvlemOLD 32487 mendplusgfval 42015 mendmulrfval 42017 mendsca 42019 mendvscafval 42020 |
Copyright terms: Public domain | W3C validator |