| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version | ||
| Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| str0.a | ⊢ 𝐹 = Slot 𝐼 |
| Ref | Expression |
|---|---|
| str0 | ⊢ ∅ = (𝐹‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
| 3 | 1, 2 | strfvn 17094 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
| 4 | 0fv 6863 | . 2 ⊢ (∅‘𝐼) = ∅ | |
| 5 | 3, 4 | eqtr2i 2755 | 1 ⊢ ∅ = (𝐹‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 ‘cfv 6481 Slot cslot 17089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-slot 17090 |
| This theorem is referenced by: strfvi 17098 setsnid 17116 base0 17122 resseqnbas 17150 oppchomfval 17617 fuchom 17868 xpchomfval 18082 xpccofval 18085 oduleval 18192 0pos 18224 frmdplusg 18759 efmndplusg 18785 oppgplusfval 19258 mgpplusg 20060 opprmulfval 20255 sralem 21108 srasca 21112 sravsca 21113 sraip 21114 zlmlem 21451 zlmvsca 21456 thlle 21632 thloc 21634 psrplusg 21871 psrmulr 21877 psrvscafval 21883 opsrle 21980 ply1plusgfvi 22152 psr1sca2 22161 ply1sca2 22164 resstopn 23099 tnglem 24553 tngds 24561 ttglem 28852 iedgval0 29016 resvlem 33293 sn-base0 42527 mendplusgfval 43213 mendmulrfval 43215 mendsca 43217 mendvscafval 43218 catcrcl 49426 |
| Copyright terms: Public domain | W3C validator |