| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > str0 | Structured version Visualization version GIF version | ||
| Description: All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| str0.a | ⊢ 𝐹 = Slot 𝐼 |
| Ref | Expression |
|---|---|
| str0 | ⊢ ∅ = (𝐹‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 2 | str0.a | . . 3 ⊢ 𝐹 = Slot 𝐼 | |
| 3 | 1, 2 | strfvn 17163 | . 2 ⊢ (𝐹‘∅) = (∅‘𝐼) |
| 4 | 0fv 6905 | . 2 ⊢ (∅‘𝐼) = ∅ | |
| 5 | 3, 4 | eqtr2i 2754 | 1 ⊢ ∅ = (𝐹‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4299 ‘cfv 6514 Slot cslot 17158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-slot 17159 |
| This theorem is referenced by: strfvi 17167 setsnid 17185 base0 17191 resseqnbas 17219 oppchomfval 17682 fuchom 17933 xpchomfval 18147 xpccofval 18150 oduleval 18257 0pos 18289 frmdplusg 18788 efmndplusg 18814 oppgplusfval 19287 mgpplusg 20060 opprmulfval 20255 sralem 21090 srasca 21094 sravsca 21095 sraip 21096 zlmlem 21433 zlmvsca 21438 thlle 21613 thloc 21615 psrplusg 21852 psrmulr 21858 psrvscafval 21864 opsrle 21961 ply1plusgfvi 22133 psr1sca2 22142 ply1sca2 22145 resstopn 23080 tnglem 24535 tngds 24543 ttglem 28810 iedgval0 28974 resvlem 33312 sn-base0 42490 mendplusgfval 43177 mendmulrfval 43179 mendsca 43181 mendvscafval 43182 catcrcl 49388 |
| Copyright terms: Public domain | W3C validator |