![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setchomfval | Structured version Visualization version GIF version |
Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcbas.c | β’ πΆ = (SetCatβπ) |
setcbas.u | β’ (π β π β π) |
setchomfval.h | β’ π» = (Hom βπΆ) |
Ref | Expression |
---|---|
setchomfval | β’ (π β π» = (π₯ β π, π¦ β π β¦ (π¦ βm π₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setcbas.c | . . 3 β’ πΆ = (SetCatβπ) | |
2 | setcbas.u | . . 3 β’ (π β π β π) | |
3 | eqidd 2732 | . . 3 β’ (π β (π₯ β π, π¦ β π β¦ (π¦ βm π₯)) = (π₯ β π, π¦ β π β¦ (π¦ βm π₯))) | |
4 | eqidd 2732 | . . 3 β’ (π β (π£ β (π Γ π), π§ β π β¦ (π β (π§ βm (2nd βπ£)), π β ((2nd βπ£) βm (1st βπ£)) β¦ (π β π))) = (π£ β (π Γ π), π§ β π β¦ (π β (π§ βm (2nd βπ£)), π β ((2nd βπ£) βm (1st βπ£)) β¦ (π β π)))) | |
5 | 1, 2, 3, 4 | setcval 18032 | . 2 β’ (π β πΆ = {β¨(Baseβndx), πβ©, β¨(Hom βndx), (π₯ β π, π¦ β π β¦ (π¦ βm π₯))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β (π§ βm (2nd βπ£)), π β ((2nd βπ£) βm (1st βπ£)) β¦ (π β π)))β©}) |
6 | catstr 17914 | . 2 β’ {β¨(Baseβndx), πβ©, β¨(Hom βndx), (π₯ β π, π¦ β π β¦ (π¦ βm π₯))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β (π§ βm (2nd βπ£)), π β ((2nd βπ£) βm (1st βπ£)) β¦ (π β π)))β©} Struct β¨1, ;15β© | |
7 | homid 17362 | . 2 β’ Hom = Slot (Hom βndx) | |
8 | snsstp2 4820 | . 2 β’ {β¨(Hom βndx), (π₯ β π, π¦ β π β¦ (π¦ βm π₯))β©} β {β¨(Baseβndx), πβ©, β¨(Hom βndx), (π₯ β π, π¦ β π β¦ (π¦ βm π₯))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β (π§ βm (2nd βπ£)), π β ((2nd βπ£) βm (1st βπ£)) β¦ (π β π)))β©} | |
9 | mpoexga 8068 | . . 3 β’ ((π β π β§ π β π) β (π₯ β π, π¦ β π β¦ (π¦ βm π₯)) β V) | |
10 | 2, 2, 9 | syl2anc 583 | . 2 β’ (π β (π₯ β π, π¦ β π β¦ (π¦ βm π₯)) β V) |
11 | setchomfval.h | . 2 β’ π» = (Hom βπΆ) | |
12 | 5, 6, 7, 8, 10, 11 | strfv3 17143 | 1 β’ (π β π» = (π₯ β π, π¦ β π β¦ (π¦ βm π₯))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 Vcvv 3473 {ctp 4632 β¨cop 4634 Γ cxp 5674 β ccom 5680 βcfv 6543 (class class class)co 7412 β cmpo 7414 1st c1st 7977 2nd c2nd 7978 βm cmap 8824 1c1 11115 5c5 12275 ;cdc 12682 ndxcnx 17131 Basecbs 17149 Hom chom 17213 compcco 17214 SetCatcsetc 18030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-slot 17120 df-ndx 17132 df-base 17150 df-hom 17226 df-cco 17227 df-setc 18031 |
This theorem is referenced by: setchom 18035 setccofval 18037 |
Copyright terms: Public domain | W3C validator |