MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusg Structured version   Visualization version   GIF version

Theorem psrplusg 21866
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrplusg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrplusg.b 𝐵 = (Base‘𝑆)
psrplusg.a + = (+g𝑅)
psrplusg.p = (+g𝑆)
Assertion
Ref Expression
psrplusg = ( ∘f + ↾ (𝐵 × 𝐵))

Proof of Theorem psrplusg
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrplusg.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2730 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 psrplusg.a . . . . 5 + = (+g𝑅)
4 eqid 2730 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2730 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 eqid 2730 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrplusg.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 482 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 21863 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
10 eqid 2730 . . . . 5 ( ∘f + ↾ (𝐵 × 𝐵)) = ( ∘f + ↾ (𝐵 × 𝐵))
11 eqid 2730 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))
12 eqid 2730 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))
13 eqidd 2731 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
14 simpr 484 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 8, 14psrval 21845 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6821 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (+g𝑆) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
17 psrplusg.p . . 3 = (+g𝑆)
187fvexi 6831 . . . . 5 𝐵 ∈ V
1918, 18xpex 7681 . . . 4 (𝐵 × 𝐵) ∈ V
20 ofexg 7610 . . . 4 ((𝐵 × 𝐵) ∈ V → ( ∘f + ↾ (𝐵 × 𝐵)) ∈ V)
21 psrvalstr 21846 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
22 plusgid 17180 . . . . 5 +g = Slot (+g‘ndx)
23 snsstp2 4767 . . . . . 6 {⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩}
24 ssun1 4126 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
2523, 24sstri 3942 . . . . 5 {⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
2621, 22, 25strfv 17106 . . . 4 (( ∘f + ↾ (𝐵 × 𝐵)) ∈ V → ( ∘f + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
2719, 20, 26mp2b 10 . . 3 ( ∘f + ↾ (𝐵 × 𝐵)) = (+g‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ∘f + ↾ (𝐵 × 𝐵))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑅)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓𝐵 ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
2816, 17, 273eqtr4g 2790 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = ( ∘f + ↾ (𝐵 × 𝐵)))
29 reldmpsr 21844 . . . . . . 7 Rel dom mPwSer
3029ovprc 7379 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
311, 30eqtrid 2777 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3231fveq2d 6821 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (+g𝑆) = (+g‘∅))
3322str0 17092 . . . 4 ∅ = (+g‘∅)
3432, 17, 333eqtr4g 2790 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
3531fveq2d 6821 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
36 base0 17117 . . . . . . . 8 ∅ = (Base‘∅)
3735, 7, 363eqtr4g 2790 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
3837xpeq2d 5644 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐵 × 𝐵) = (𝐵 × ∅))
39 xp0 6102 . . . . . 6 (𝐵 × ∅) = ∅
4038, 39eqtrdi 2781 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐵 × 𝐵) = ∅)
4140reseq2d 5925 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ∘f + ↾ (𝐵 × 𝐵)) = ( ∘f + ↾ ∅))
42 res0 5929 . . . 4 ( ∘f + ↾ ∅) = ∅
4341, 42eqtrdi 2781 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ∘f + ↾ (𝐵 × 𝐵)) = ∅)
4434, 43eqtr4d 2768 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ( ∘f + ↾ (𝐵 × 𝐵)))
4528, 44pm2.61i 182 1 = ( ∘f + ↾ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  cun 3898  c0 4281  {csn 4574  {ctp 4578  cop 4580   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  cres 5616  cima 5617  cfv 6477  (class class class)co 7341  cmpo 7343  f cof 7603  r cofr 7604  m cmap 8745  Fincfn 8864  1c1 10999  cle 11139  cmin 11336  cn 12117  9c9 12179  0cn0 12373  ndxcnx 17096  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  Scalarcsca 17156   ·𝑠 cvsca 17157  TopSetcts 17159  TopOpenctopn 17317  tcpt 17334   Σg cgsu 17336   mPwSer cmps 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-tset 17172  df-psr 21839
This theorem is referenced by:  psradd  21867  psrmulr  21872  psrsca  21877  psrvscafval  21878  psrplusgpropd  22141  ply1plusgfvi  22147
  Copyright terms: Public domain W3C validator