MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsle Structured version   Visualization version   GIF version

Theorem prdsle 17415
Description: Structure product weak ordering. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (πœ‘ β†’ 𝑆 ∈ 𝑉)
prdsbas.r (πœ‘ β†’ 𝑅 ∈ π‘Š)
prdsbas.b 𝐡 = (Baseβ€˜π‘ƒ)
prdsbas.i (πœ‘ β†’ dom 𝑅 = 𝐼)
prdsle.l ≀ = (leβ€˜π‘ƒ)
Assertion
Ref Expression
prdsle (πœ‘ β†’ ≀ = {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))})
Distinct variable groups:   𝑓,𝑔,π‘₯,𝐡   πœ‘,𝑓,𝑔,π‘₯   𝑓,𝐼,𝑔,π‘₯   𝑃,𝑓,𝑔,π‘₯   𝑅,𝑓,𝑔,π‘₯   𝑆,𝑓,𝑔,π‘₯
Allowed substitution hints:   ≀ (π‘₯,𝑓,𝑔)   𝑉(π‘₯,𝑓,𝑔)   π‘Š(π‘₯,𝑓,𝑔)

Proof of Theorem prdsle
Dummy variables π‘Ž 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2726 . . 3 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
3 prdsbas.i . . 3 (πœ‘ β†’ dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (πœ‘ β†’ 𝑆 ∈ 𝑉)
5 prdsbas.r . . . 4 (πœ‘ β†’ 𝑅 ∈ π‘Š)
6 prdsbas.b . . . 4 𝐡 = (Baseβ€˜π‘ƒ)
71, 4, 5, 6, 3prdsbas 17410 . . 3 (πœ‘ β†’ 𝐡 = Xπ‘₯ ∈ 𝐼 (Baseβ€˜(π‘…β€˜π‘₯)))
8 eqid 2726 . . . 4 (+gβ€˜π‘ƒ) = (+gβ€˜π‘ƒ)
91, 4, 5, 6, 3, 8prdsplusg 17411 . . 3 (πœ‘ β†’ (+gβ€˜π‘ƒ) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
10 eqid 2726 . . . 4 (.rβ€˜π‘ƒ) = (.rβ€˜π‘ƒ)
111, 4, 5, 6, 3, 10prdsmulr 17412 . . 3 (πœ‘ β†’ (.rβ€˜π‘ƒ) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
12 eqid 2726 . . . 4 ( ·𝑠 β€˜π‘ƒ) = ( ·𝑠 β€˜π‘ƒ)
131, 4, 5, 6, 3, 2, 12prdsvsca 17413 . . 3 (πœ‘ β†’ ( ·𝑠 β€˜π‘ƒ) = (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
14 eqidd 2727 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))))
15 eqidd 2727 . . 3 (πœ‘ β†’ (∏tβ€˜(TopOpen ∘ 𝑅)) = (∏tβ€˜(TopOpen ∘ 𝑅)))
16 eqidd 2727 . . 3 (πœ‘ β†’ {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} = {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))})
17 eqidd 2727 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < )) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < )))
18 eqidd 2727 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))
19 eqidd 2727 . . 3 (πœ‘ β†’ (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))) = (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))))
201, 2, 3, 7, 9, 11, 13, 14, 15, 16, 17, 18, 19, 4, 5prdsval 17408 . 2 (πœ‘ β†’ 𝑃 = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ƒ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ƒ)⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
21 prdsle.l . 2 ≀ = (leβ€˜π‘ƒ)
22 pleid 17319 . 2 le = Slot (leβ€˜ndx)
236fvexi 6898 . . . . 5 𝐡 ∈ V
2423, 23xpex 7736 . . . 4 (𝐡 Γ— 𝐡) ∈ V
25 vex 3472 . . . . . . . 8 𝑓 ∈ V
26 vex 3472 . . . . . . . 8 𝑔 ∈ V
2725, 26prss 4818 . . . . . . 7 ((𝑓 ∈ 𝐡 ∧ 𝑔 ∈ 𝐡) ↔ {𝑓, 𝑔} βŠ† 𝐡)
2827anbi1i 623 . . . . . 6 (((𝑓 ∈ 𝐡 ∧ 𝑔 ∈ 𝐡) ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)) ↔ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))
2928opabbii 5208 . . . . 5 {βŸ¨π‘“, π‘”βŸ© ∣ ((𝑓 ∈ 𝐡 ∧ 𝑔 ∈ 𝐡) ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} = {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}
30 opabssxp 5761 . . . . 5 {βŸ¨π‘“, π‘”βŸ© ∣ ((𝑓 ∈ 𝐡 ∧ 𝑔 ∈ 𝐡) ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} βŠ† (𝐡 Γ— 𝐡)
3129, 30eqsstrri 4012 . . . 4 {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} βŠ† (𝐡 Γ— 𝐡)
3224, 31ssexi 5315 . . 3 {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} ∈ V
3332a1i 11 . 2 (πœ‘ β†’ {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))} ∈ V)
34 snsstp2 4815 . . . 4 {⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩} βŠ† {⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩}
35 ssun1 4167 . . . 4 {⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βŠ† ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})
3634, 35sstri 3986 . . 3 {⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩} βŠ† ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})
37 ssun2 4168 . . 3 ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}) βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ƒ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ƒ)⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}))
3836, 37sstri 3986 . 2 {⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩} βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ƒ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ƒ)⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ 𝑅))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)(𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}))
3920, 21, 22, 33, 38prdsbaslem 17406 1 (πœ‘ β†’ ≀ = {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  Vcvv 3468   βˆͺ cun 3941   βŠ† wss 3943  {csn 4623  {cpr 4625  {ctp 4627  βŸ¨cop 4629   class class class wbr 5141  {copab 5203   ↦ cmpt 5224   Γ— cxp 5667  dom cdm 5669  ran crn 5670   ∘ ccom 5673  β€˜cfv 6536  (class class class)co 7404   ∈ cmpo 7406  1st c1st 7969  2nd c2nd 7970  Xcixp 8890  supcsup 9434  0cc0 11109  β„*cxr 11248   < clt 11249  ndxcnx 17133  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  Β·π‘–cip 17209  TopSetcts 17210  lecple 17211  distcds 17213  Hom chom 17215  compcco 17216  TopOpenctopn 17374  βˆtcpt 17391   Ξ£g cgsu 17393  Xscprds 17398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-prds 17400
This theorem is referenced by:  prdsless  17416  prdsds  17417  prdstset  17419  prdshom  17420  prdsco  17421  prdsleval  17430  pwsle  17445
  Copyright terms: Public domain W3C validator