![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomfvalALTV | Structured version Visualization version GIF version |
Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomfvalALTV.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
rngchomfvalALTV | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomfvalALTV.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
2 | rngcbasALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
3 | rngcbasALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | rngcbasALTV.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 2, 4, 3 | rngcbasALTV 42991 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
6 | eqidd 2778 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) | |
7 | eqidd 2778 | . . . . 5 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))) | |
8 | 2, 3, 5, 6, 7 | rngcvalALTV 42969 | . . . 4 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉}) |
9 | 8 | fveq2d 6450 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉})) |
10 | 1, 9 | syl5eq 2825 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉})) |
11 | 4 | fvexi 6460 | . . . 4 ⊢ 𝐵 ∈ V |
12 | 11, 11 | mpt2ex 7527 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) ∈ V |
13 | catstr 17002 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} Struct 〈1, ;15〉 | |
14 | homid 16461 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
15 | snsstp2 4579 | . . . 4 ⊢ {〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} | |
16 | 13, 14, 15 | strfv 16303 | . . 3 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉})) |
17 | 12, 16 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉})) |
18 | 10, 17 | eqtr4d 2816 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 Vcvv 3397 {ctp 4401 〈cop 4403 × cxp 5353 ∘ ccom 5359 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 1st c1st 7443 2nd c2nd 7444 1c1 10273 5c5 11433 ;cdc 11845 ndxcnx 16252 Basecbs 16255 Hom chom 16349 compcco 16350 RngHomo crngh 42893 RngCatALTVcrngcALTV 42966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-hom 16362 df-cco 16363 df-rngcALTV 42968 |
This theorem is referenced by: rngchomALTV 42993 rngccofvalALTV 42995 rngchomffvalALTV 43003 |
Copyright terms: Public domain | W3C validator |