Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgplusg Structured version   Visualization version   GIF version

Theorem idlsrgplusg 33466
Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgplusg.1 𝑆 = (IDLsrg‘𝑅)
idlsrgplusg.2 = (LSSum‘𝑅)
Assertion
Ref Expression
idlsrgplusg (𝑅𝑉 = (+g𝑆))

Proof of Theorem idlsrgplusg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgplusg.2 . . . 4 = (LSSum‘𝑅)
21fvexi 6889 . . 3 ∈ V
3 eqid 2735 . . . . 5 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
43idlsrgstr 33463 . . . 4 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
5 plusgid 17296 . . . 4 +g = Slot (+g‘ndx)
6 snsstp2 4793 . . . . 5 {⟨(+g‘ndx), ⟩} ⊆ {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩}
7 ssun1 4153 . . . . 5 {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
86, 7sstri 3968 . . . 4 {⟨(+g‘ndx), ⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
94, 5, 8strfv 17220 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
102, 9ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
11 idlsrgplusg.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
12 eqid 2735 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
13 eqid 2735 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2735 . . . . 5 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
1512, 1, 13, 14idlsrgval 33464 . . . 4 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1611, 15eqtrid 2782 . . 3 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1716fveq2d 6879 . 2 (𝑅𝑉 → (+g𝑆) = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
1810, 17eqtr4id 2789 1 (𝑅𝑉 = (+g𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cun 3924  wss 3926  {csn 4601  {cpr 4603  {ctp 4605  cop 4607  {copab 5181  cmpt 5201  ran crn 5655  cfv 6530  (class class class)co 7403  cmpo 7405  0cc0 11127  1c1 11128  cdc 12706  ndxcnx 17210  Basecbs 17226  +gcplusg 17269  .rcmulr 17270  TopSetcts 17275  lecple 17276  LSSumclsm 19613  mulGrpcmgp 20098  LIdealclidl 21165  RSpancrsp 21166  IDLsrgcidlsrg 33461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-tset 17288  df-ple 17289  df-idlsrg 33462
This theorem is referenced by:  idlsrg0g  33467  idlsrgmnd  33475  idlsrgcmnd  33476
  Copyright terms: Public domain W3C validator