Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgplusg Structured version   Visualization version   GIF version

Theorem idlsrgplusg 33533
Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgplusg.1 𝑆 = (IDLsrg‘𝑅)
idlsrgplusg.2 = (LSSum‘𝑅)
Assertion
Ref Expression
idlsrgplusg (𝑅𝑉 = (+g𝑆))

Proof of Theorem idlsrgplusg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgplusg.2 . . . 4 = (LSSum‘𝑅)
21fvexi 6920 . . 3 ∈ V
3 eqid 2737 . . . . 5 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
43idlsrgstr 33530 . . . 4 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
5 plusgid 17324 . . . 4 +g = Slot (+g‘ndx)
6 snsstp2 4817 . . . . 5 {⟨(+g‘ndx), ⟩} ⊆ {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩}
7 ssun1 4178 . . . . 5 {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
86, 7sstri 3993 . . . 4 {⟨(+g‘ndx), ⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
94, 5, 8strfv 17240 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
102, 9ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
11 idlsrgplusg.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
12 eqid 2737 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
13 eqid 2737 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2737 . . . . 5 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
1512, 1, 13, 14idlsrgval 33531 . . . 4 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1611, 15eqtrid 2789 . . 3 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1716fveq2d 6910 . 2 (𝑅𝑉 → (+g𝑆) = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
1810, 17eqtr4id 2796 1 (𝑅𝑉 = (+g𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cun 3949  wss 3951  {csn 4626  {cpr 4628  {ctp 4630  cop 4632  {copab 5205  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156  cdc 12733  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  TopSetcts 17303  lecple 17304  LSSumclsm 19652  mulGrpcmgp 20137  LIdealclidl 21216  RSpancrsp 21217  IDLsrgcidlsrg 33528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-idlsrg 33529
This theorem is referenced by:  idlsrg0g  33534  idlsrgmnd  33542  idlsrgcmnd  33543
  Copyright terms: Public domain W3C validator