Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgplusg Structured version   Visualization version   GIF version

Theorem idlsrgplusg 31119
 Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgplusg.1 𝑆 = (IDLsrg‘𝑅)
idlsrgplusg.2 = (LSSum‘𝑅)
Assertion
Ref Expression
idlsrgplusg (𝑅𝑉 = (+g𝑆))

Proof of Theorem idlsrgplusg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgplusg.2 . . . 4 = (LSSum‘𝑅)
21fvexi 6669 . . 3 ∈ V
3 eqid 2798 . . . . 5 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
43idlsrgstr 31116 . . . 4 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
5 plusgid 16608 . . . 4 +g = Slot (+g‘ndx)
6 snsstp2 4713 . . . . 5 {⟨(+g‘ndx), ⟩} ⊆ {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩}
7 ssun1 4102 . . . . 5 {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
86, 7sstri 3926 . . . 4 {⟨(+g‘ndx), ⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
94, 5, 8strfv 16543 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
102, 9ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
11 idlsrgplusg.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
12 eqid 2798 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
13 eqid 2798 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2798 . . . . 5 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
1512, 1, 13, 14idlsrgval 31117 . . . 4 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1611, 15syl5eq 2845 . . 3 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1716fveq2d 6659 . 2 (𝑅𝑉 → (+g𝑆) = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
1810, 17eqtr4id 2852 1 (𝑅𝑉 = (+g𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3442   ∪ cun 3881   ⊆ wss 3883  {csn 4528  {cpr 4530  {ctp 4532  ⟨cop 4534  {copab 5096   ↦ cmpt 5114  ran crn 5524  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  0cc0 10544  1c1 10545  ;cdc 12106  ndxcnx 16492  Basecbs 16495  +gcplusg 16577  .rcmulr 16578  TopSetcts 16583  lecple 16584  LSSumclsm 18772  mulGrpcmgp 19253  LIdealclidl 19956  RSpancrsp 19957  IDLsrgcidlsrg 31114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-plusg 16590  df-mulr 16591  df-tset 16596  df-ple 16597  df-idlsrg 31115 This theorem is referenced by:  idlsrg0g  31120  idlsrgmnd  31128  idlsrgcmnd  31129
 Copyright terms: Public domain W3C validator