Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgplusg Structured version   Visualization version   GIF version

Theorem idlsrgplusg 33514
Description: Additive operation of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgplusg.1 𝑆 = (IDLsrg‘𝑅)
idlsrgplusg.2 = (LSSum‘𝑅)
Assertion
Ref Expression
idlsrgplusg (𝑅𝑉 = (+g𝑆))

Proof of Theorem idlsrgplusg
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgplusg.2 . . . 4 = (LSSum‘𝑅)
21fvexi 6845 . . 3 ∈ V
3 eqid 2733 . . . . 5 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
43idlsrgstr 33511 . . . 4 ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
5 plusgid 17195 . . . 4 +g = Slot (+g‘ndx)
6 snsstp2 4770 . . . . 5 {⟨(+g‘ndx), ⟩} ⊆ {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩}
7 ssun1 4127 . . . . 5 {⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
86, 7sstri 3940 . . . 4 {⟨(+g‘ndx), ⟩} ⊆ ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})
94, 5, 8strfv 17121 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
102, 9ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
11 idlsrgplusg.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
12 eqid 2733 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
13 eqid 2733 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2733 . . . . 5 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
1512, 1, 13, 14idlsrgval 33512 . . . 4 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1611, 15eqtrid 2780 . . 3 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩}))
1716fveq2d 6835 . 2 (𝑅𝑉 → (+g𝑆) = (+g‘({⟨(Base‘ndx), (LIdeal‘𝑅)⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), (𝑖 ∈ (LIdeal‘𝑅), 𝑗 ∈ (LIdeal‘𝑅) ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (LIdeal‘𝑅) ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ (LIdeal‘𝑅) ∧ 𝑖𝑗)}⟩})))
1810, 17eqtr4id 2787 1 (𝑅𝑉 = (+g𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cun 3896  wss 3898  {csn 4577  {cpr 4579  {ctp 4581  cop 4583  {copab 5157  cmpt 5176  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357  0cc0 11017  1c1 11018  cdc 12598  ndxcnx 17111  Basecbs 17127  +gcplusg 17168  .rcmulr 17169  TopSetcts 17174  lecple 17175  LSSumclsm 19554  mulGrpcmgp 20066  LIdealclidl 21152  RSpancrsp 21153  IDLsrgcidlsrg 33509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-mulr 17182  df-tset 17187  df-ple 17188  df-idlsrg 33510
This theorem is referenced by:  idlsrg0g  33515  idlsrgmnd  33523  idlsrgcmnd  33524
  Copyright terms: Public domain W3C validator