Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusg Structured version   Visualization version   GIF version

Theorem prdsplusg 16789
 Description: Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
prdsplusg.b + = (+g𝑃)
Assertion
Ref Expression
prdsplusg (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝜑,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑃,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑆,𝑓,𝑔,𝑥
Allowed substitution hints:   + (𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem prdsplusg
Dummy variables 𝑎 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2758 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (𝜑𝑆𝑉)
5 prdsbas.r . . . 4 (𝜑𝑅𝑊)
6 prdsbas.b . . . 4 𝐵 = (Base‘𝑃)
71, 4, 5, 6, 3prdsbas 16788 . . 3 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
8 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
9 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
10 eqidd 2759 . . 3 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
11 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
12 eqidd 2759 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
13 eqidd 2759 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
14 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
15 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
16 eqidd 2759 . . 3 (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
171, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 4, 5prdsval 16786 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
18 prdsplusg.b . 2 + = (+g𝑃)
19 plusgid 16654 . 2 +g = Slot (+g‘ndx)
20 ovssunirn 7186 . . . . . . . . . . 11 ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran (+g‘(𝑅𝑥))
2119strfvss 16564 . . . . . . . . . . . . 13 (+g‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
22 fvssunirn 6687 . . . . . . . . . . . . . 14 (𝑅𝑥) ⊆ ran 𝑅
23 rnss 5780 . . . . . . . . . . . . . 14 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
24 uniss 4806 . . . . . . . . . . . . . 14 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2522, 23, 24mp2b 10 . . . . . . . . . . . . 13 ran (𝑅𝑥) ⊆ ran ran 𝑅
2621, 25sstri 3901 . . . . . . . . . . . 12 (+g‘(𝑅𝑥)) ⊆ ran ran 𝑅
27 rnss 5780 . . . . . . . . . . . 12 ((+g‘(𝑅𝑥)) ⊆ ran ran 𝑅 → ran (+g‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
28 uniss 4806 . . . . . . . . . . . 12 (ran (+g‘(𝑅𝑥)) ⊆ ran ran ran 𝑅 ran (+g‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
2926, 27, 28mp2b 10 . . . . . . . . . . 11 ran (+g‘(𝑅𝑥)) ⊆ ran ran ran 𝑅
3020, 29sstri 3901 . . . . . . . . . 10 ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅
31 ovex 7183 . . . . . . . . . . 11 ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ∈ V
3231elpw 4498 . . . . . . . . . 10 (((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅 ↔ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅)
3330, 32mpbir 234 . . . . . . . . 9 ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅
3433a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅)
3534fmpttd 6870 . . . . . . 7 (𝜑 → (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅)
36 rnexg 7614 . . . . . . . . . . 11 (𝑅𝑊 → ran 𝑅 ∈ V)
37 uniexg 7464 . . . . . . . . . . 11 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
385, 36, 373syl 18 . . . . . . . . . 10 (𝜑 ran 𝑅 ∈ V)
39 rnexg 7614 . . . . . . . . . 10 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
40 uniexg 7464 . . . . . . . . . 10 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
4138, 39, 403syl 18 . . . . . . . . 9 (𝜑 ran ran 𝑅 ∈ V)
42 rnexg 7614 . . . . . . . . 9 ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
43 uniexg 7464 . . . . . . . . 9 (ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
44 pwexg 5247 . . . . . . . . 9 ( ran ran ran 𝑅 ∈ V → 𝒫 ran ran ran 𝑅 ∈ V)
4541, 42, 43, 444syl 19 . . . . . . . 8 (𝜑 → 𝒫 ran ran ran 𝑅 ∈ V)
465dmexd 7615 . . . . . . . . 9 (𝜑 → dom 𝑅 ∈ V)
473, 46eqeltrrd 2853 . . . . . . . 8 (𝜑𝐼 ∈ V)
4845, 47elmapd 8430 . . . . . . 7 (𝜑 → ((𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼) ↔ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅))
4935, 48mpbird 260 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
5049ralrimivw 3114 . . . . 5 (𝜑 → ∀𝑔𝐵 (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
5150ralrimivw 3114 . . . 4 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
52 eqid 2758 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))
5352fmpo 7770 . . . 4 (∀𝑓𝐵𝑔𝐵 (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼) ↔ (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))):(𝐵 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼))
5451, 53sylib 221 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))):(𝐵 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼))
556fvexi 6672 . . . . 5 𝐵 ∈ V
5655, 55xpex 7474 . . . 4 (𝐵 × 𝐵) ∈ V
57 ovex 7183 . . . 4 (𝒫 ran ran ran 𝑅m 𝐼) ∈ V
58 fex2 7643 . . . 4 (((𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))):(𝐵 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼) ∧ (𝐵 × 𝐵) ∈ V ∧ (𝒫 ran ran ran 𝑅m 𝐼) ∈ V) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
5956, 57, 58mp3an23 1450 . . 3 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))):(𝐵 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼) → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6054, 59syl 17 . 2 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
61 snsstp2 4707 . . . 4 {⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩}
62 ssun1 4077 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
6361, 62sstri 3901 . . 3 {⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
64 ssun1 4077 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
6563, 64sstri 3901 . 2 {⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
6617, 18, 19, 60, 65prdsvallem 16785 1 (𝜑+ = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   ∪ cun 3856   ⊆ wss 3858  𝒫 cpw 4494  {csn 4522  {cpr 4524  {ctp 4526  ⟨cop 4528  ∪ cuni 4798   class class class wbr 5032  {copab 5094   ↦ cmpt 5112   × cxp 5522  dom cdm 5524  ran crn 5525   ∘ ccom 5528  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   ∈ cmpo 7152  1st c1st 7691  2nd c2nd 7692   ↑m cmap 8416  Xcixp 8479  supcsup 8937  0cc0 10575  ℝ*cxr 10712   < clt 10713  ndxcnx 16538  Basecbs 16541  +gcplusg 16623  .rcmulr 16624  Scalarcsca 16626   ·𝑠 cvsca 16627  ·𝑖cip 16628  TopSetcts 16629  lecple 16630  distcds 16632  Hom chom 16634  compcco 16635  TopOpenctopn 16753  ∏tcpt 16770   Σg cgsu 16772  Xscprds 16777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-hom 16647  df-cco 16648  df-prds 16779 This theorem is referenced by:  prdsmulr  16790  prdsvsca  16791  prdsip  16792  prdsle  16793  prdsds  16795  prdstset  16797  prdshom  16798  prdsco  16799  prdsplusgval  16804  prdsmgp  19431
 Copyright terms: Public domain W3C validator