Step | Hyp | Ref
| Expression |
1 | | xpchomfval.t |
. . . 4
⊢ 𝑇 = (𝐶 ×c 𝐷) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘𝐷) |
4 | | xpchomfval.h |
. . . 4
⊢ 𝐻 = (Hom ‘𝐶) |
5 | | xpchomfval.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐷) |
6 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐶) =
(comp‘𝐶) |
7 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
8 | | simpl 483 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V) |
9 | | simpr 485 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V) |
10 | | xpchomfval.y |
. . . . . 6
⊢ 𝐵 = (Base‘𝑇) |
11 | 1, 2, 3 | xpcbas 17895 |
. . . . . 6
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘𝑇) |
12 | 10, 11 | eqtr4i 2769 |
. . . . 5
⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
13 | 12 | a1i 11 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ((Base‘𝐶) × (Base‘𝐷))) |
14 | | eqidd 2739 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))) |
15 | | eqidd 2739 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉)) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13,
14, 15 | xpcval 17894 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {〈(Base‘ndx),
𝐵〉, 〈(Hom
‘ndx), (𝑢 ∈
𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
17 | | catstr 17674 |
. . 3
⊢
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} Struct 〈1, ;15〉 |
18 | | homid 17122 |
. . 3
⊢ Hom =
Slot (Hom ‘ndx) |
19 | | snsstp2 4750 |
. . 3
⊢
{〈(Hom ‘ndx), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))〉} ⊆ {〈(Base‘ndx),
𝐵〉, 〈(Hom
‘ndx), (𝑢 ∈
𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))〉, 〈(comp‘ndx), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)(𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝐶)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝐷)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} |
20 | 10 | fvexi 6788 |
. . . . 5
⊢ 𝐵 ∈ V |
21 | 20, 20 | mpoex 7920 |
. . . 4
⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) ∈ V |
22 | 21 | a1i 11 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) ∈ V) |
23 | | xpchomfval.k |
. . 3
⊢ 𝐾 = (Hom ‘𝑇) |
24 | 16, 17, 18, 19, 22, 23 | strfv3 16906 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))) |
25 | | fnxpc 17893 |
. . . . . . . 8
⊢
×c Fn (V × V) |
26 | | fndm 6536 |
. . . . . . . 8
⊢ (
×c Fn (V × V) → dom
×c = (V × V)) |
27 | 25, 26 | ax-mp 5 |
. . . . . . 7
⊢ dom
×c = (V × V) |
28 | 27 | ndmov 7456 |
. . . . . 6
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c
𝐷) =
∅) |
29 | 1, 28 | eqtrid 2790 |
. . . . 5
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅) |
30 | 29 | fveq2d 6778 |
. . . 4
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (Hom
‘𝑇) = (Hom
‘∅)) |
31 | 18 | str0 16890 |
. . . 4
⊢ ∅ =
(Hom ‘∅) |
32 | 30, 23, 31 | 3eqtr4g 2803 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = ∅) |
33 | 29 | fveq2d 6778 |
. . . . . 6
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) →
(Base‘𝑇) =
(Base‘∅)) |
34 | | base0 16917 |
. . . . . 6
⊢ ∅ =
(Base‘∅) |
35 | 33, 10, 34 | 3eqtr4g 2803 |
. . . . 5
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐵 = ∅) |
36 | 35 | olcd 871 |
. . . 4
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐵 = ∅ ∨ 𝐵 = ∅)) |
37 | | 0mpo0 7358 |
. . . 4
⊢ ((𝐵 = ∅ ∨ 𝐵 = ∅) → (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) = ∅) |
38 | 36, 37 | syl 17 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) = ∅) |
39 | 32, 38 | eqtr4d 2781 |
. 2
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))) |
40 | 24, 39 | pm2.61i 182 |
1
⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) |