Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvsca Structured version   Visualization version   GIF version

Theorem prdsvsca 16784
 Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
prdsvsca.k 𝐾 = (Base‘𝑆)
prdsvsca.m · = ( ·𝑠𝑃)
Assertion
Ref Expression
prdsvsca (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐾,𝑔   𝜑,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑃,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑆,𝑓,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝐾(𝑥)   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem prdsvsca
Dummy variables 𝑎 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 prdsvsca.k . . 3 𝐾 = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (𝜑𝑆𝑉)
5 prdsbas.r . . . 4 (𝜑𝑅𝑊)
6 prdsbas.b . . . 4 𝐵 = (Base‘𝑃)
71, 4, 5, 6, 3prdsbas 16781 . . 3 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
8 eqid 2759 . . . 4 (+g𝑃) = (+g𝑃)
91, 4, 5, 6, 3, 8prdsplusg 16782 . . 3 (𝜑 → (+g𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
10 eqid 2759 . . . 4 (.r𝑃) = (.r𝑃)
111, 4, 5, 6, 3, 10prdsmulr 16783 . . 3 (𝜑 → (.r𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
12 eqidd 2760 . . 3 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
13 eqidd 2760 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
14 eqidd 2760 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
15 eqidd 2760 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
16 eqidd 2760 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
17 eqidd 2760 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
18 eqidd 2760 . . 3 (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
191, 2, 3, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5prdsval 16779 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
20 prdsvsca.m . 2 · = ( ·𝑠𝑃)
21 vscaid 16686 . 2 ·𝑠 = Slot ( ·𝑠 ‘ndx)
22 ovssunirn 7187 . . . . . . . . . . 11 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ( ·𝑠 ‘(𝑅𝑥))
2321strfvss 16557 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
24 fvssunirn 6688 . . . . . . . . . . . . . 14 (𝑅𝑥) ⊆ ran 𝑅
25 rnss 5781 . . . . . . . . . . . . . 14 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
26 uniss 4807 . . . . . . . . . . . . . 14 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2724, 25, 26mp2b 10 . . . . . . . . . . . . 13 ran (𝑅𝑥) ⊆ ran ran 𝑅
2823, 27sstri 3902 . . . . . . . . . . . 12 ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran 𝑅
29 rnss 5781 . . . . . . . . . . . 12 (( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran 𝑅 → ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
30 uniss 4807 . . . . . . . . . . . 12 (ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅 ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
3128, 29, 30mp2b 10 . . . . . . . . . . 11 ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅
3222, 31sstri 3902 . . . . . . . . . 10 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅
33 ovex 7184 . . . . . . . . . . 11 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ V
3433elpw 4499 . . . . . . . . . 10 ((𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅 ↔ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅)
3532, 34mpbir 234 . . . . . . . . 9 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅
3635a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅)
3736fmpttd 6871 . . . . . . 7 (𝜑 → (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅)
38 rnexg 7615 . . . . . . . . . . 11 (𝑅𝑊 → ran 𝑅 ∈ V)
39 uniexg 7465 . . . . . . . . . . 11 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
405, 38, 393syl 18 . . . . . . . . . 10 (𝜑 ran 𝑅 ∈ V)
41 rnexg 7615 . . . . . . . . . 10 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
42 uniexg 7465 . . . . . . . . . 10 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
4340, 41, 423syl 18 . . . . . . . . 9 (𝜑 ran ran 𝑅 ∈ V)
44 rnexg 7615 . . . . . . . . 9 ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
45 uniexg 7465 . . . . . . . . 9 (ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
46 pwexg 5248 . . . . . . . . 9 ( ran ran ran 𝑅 ∈ V → 𝒫 ran ran ran 𝑅 ∈ V)
4743, 44, 45, 464syl 19 . . . . . . . 8 (𝜑 → 𝒫 ran ran ran 𝑅 ∈ V)
485dmexd 7616 . . . . . . . . 9 (𝜑 → dom 𝑅 ∈ V)
493, 48eqeltrrd 2854 . . . . . . . 8 (𝜑𝐼 ∈ V)
5047, 49elmapd 8431 . . . . . . 7 (𝜑 → ((𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼) ↔ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅))
5137, 50mpbird 260 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
5251ralrimivw 3115 . . . . 5 (𝜑 → ∀𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
5352ralrimivw 3115 . . . 4 (𝜑 → ∀𝑓𝐾𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
54 eqid 2759 . . . . 5 (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
5554fmpo 7771 . . . 4 (∀𝑓𝐾𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼) ↔ (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼))
5653, 55sylib 221 . . 3 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼))
572fvexi 6673 . . . . 5 𝐾 ∈ V
586fvexi 6673 . . . . 5 𝐵 ∈ V
5957, 58xpex 7475 . . . 4 (𝐾 × 𝐵) ∈ V
60 ovex 7184 . . . 4 (𝒫 ran ran ran 𝑅m 𝐼) ∈ V
61 fex2 7644 . . . 4 (((𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼) ∧ (𝐾 × 𝐵) ∈ V ∧ (𝒫 ran ran ran 𝑅m 𝐼) ∈ V) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6259, 60, 61mp3an23 1451 . . 3 ((𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6356, 62syl 17 . 2 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
64 snsstp2 4708 . . . 4 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}
65 ssun2 4079 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
6664, 65sstri 3902 . . 3 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
67 ssun1 4078 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
6866, 67sstri 3902 . 2 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
6919, 20, 21, 63, 68prdsvallem 16778 1 (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3071  Vcvv 3410   ∪ cun 3857   ⊆ wss 3859  𝒫 cpw 4495  {csn 4523  {cpr 4525  {ctp 4527  ⟨cop 4529  ∪ cuni 4799   class class class wbr 5033  {copab 5095   ↦ cmpt 5113   × cxp 5523  dom cdm 5525  ran crn 5526   ∘ ccom 5529  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153  1st c1st 7692  2nd c2nd 7693   ↑m cmap 8417  Xcixp 8480  supcsup 8930  0cc0 10568  ℝ*cxr 10705   < clt 10706  ndxcnx 16531  Basecbs 16534  +gcplusg 16616  .rcmulr 16617  Scalarcsca 16619   ·𝑠 cvsca 16620  ·𝑖cip 16621  TopSetcts 16622  lecple 16623  distcds 16625  Hom chom 16627  compcco 16628  TopOpenctopn 16746  ∏tcpt 16763   Σg cgsu 16765  Xscprds 16770 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8932  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-fz 12933  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-plusg 16629  df-mulr 16630  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-hom 16640  df-cco 16641  df-prds 16772 This theorem is referenced by:  prdsle  16786  prdsds  16788  prdstset  16790  prdshom  16791  prdsco  16792  prdsvscaval  16803
 Copyright terms: Public domain W3C validator