Step | Hyp | Ref
| Expression |
1 | | prdsbas.p |
. . 3
⊢ 𝑃 = (𝑆Xs𝑅) |
2 | | prdsvsca.k |
. . 3
⊢ 𝐾 = (Base‘𝑆) |
3 | | prdsbas.i |
. . 3
⊢ (𝜑 → dom 𝑅 = 𝐼) |
4 | | prdsbas.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
5 | | prdsbas.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
6 | | prdsbas.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
7 | 1, 4, 5, 6, 3 | prdsbas 17085 |
. . 3
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
8 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑃) = (+g‘𝑃) |
9 | 1, 4, 5, 6, 3, 8 | prdsplusg 17086 |
. . 3
⊢ (𝜑 → (+g‘𝑃) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
10 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑃) = (.r‘𝑃) |
11 | 1, 4, 5, 6, 3, 10 | prdsmulr 17087 |
. . 3
⊢ (𝜑 → (.r‘𝑃) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
12 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
13 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
14 | | eqidd 2739 |
. . 3
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen
∘ 𝑅))) |
15 | | eqidd 2739 |
. . 3
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
16 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
17 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
18 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
19 | 1, 2, 3, 7, 9, 11,
12, 13, 14, 15, 16, 17, 18, 4, 5 | prdsval 17083 |
. 2
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), (+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
20 | | prdsvsca.m |
. 2
⊢ · = (
·𝑠 ‘𝑃) |
21 | | vscaid 16956 |
. 2
⊢
·𝑠 = Slot (
·𝑠 ‘ndx) |
22 | | ovssunirn 7291 |
. . . . . . . . . . 11
⊢ (𝑓(
·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran (
·𝑠 ‘(𝑅‘𝑥)) |
23 | 21 | strfvss 16816 |
. . . . . . . . . . . . 13
⊢ (
·𝑠 ‘(𝑅‘𝑥)) ⊆ ∪ ran
(𝑅‘𝑥) |
24 | | fvssunirn 6785 |
. . . . . . . . . . . . . 14
⊢ (𝑅‘𝑥) ⊆ ∪ ran
𝑅 |
25 | | rnss 5837 |
. . . . . . . . . . . . . 14
⊢ ((𝑅‘𝑥) ⊆ ∪ ran
𝑅 → ran (𝑅‘𝑥) ⊆ ran ∪
ran 𝑅) |
26 | | uniss 4844 |
. . . . . . . . . . . . . 14
⊢ (ran
(𝑅‘𝑥) ⊆ ran ∪
ran 𝑅 → ∪ ran (𝑅‘𝑥) ⊆ ∪ ran
∪ ran 𝑅) |
27 | 24, 25, 26 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ ∪ ran (𝑅‘𝑥) ⊆ ∪ ran
∪ ran 𝑅 |
28 | 23, 27 | sstri 3926 |
. . . . . . . . . . . 12
⊢ (
·𝑠 ‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 |
29 | | rnss 5837 |
. . . . . . . . . . . 12
⊢ ((
·𝑠 ‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 → ran (
·𝑠 ‘(𝑅‘𝑥)) ⊆ ran ∪
ran ∪ ran 𝑅) |
30 | | uniss 4844 |
. . . . . . . . . . . 12
⊢ (ran (
·𝑠 ‘(𝑅‘𝑥)) ⊆ ran ∪
ran ∪ ran 𝑅 → ∪ ran (
·𝑠 ‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅) |
31 | 28, 29, 30 | mp2b 10 |
. . . . . . . . . . 11
⊢ ∪ ran ( ·𝑠 ‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅 |
32 | 22, 31 | sstri 3926 |
. . . . . . . . . 10
⊢ (𝑓(
·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅 |
33 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑓(
·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ V |
34 | 33 | elpw 4534 |
. . . . . . . . . 10
⊢ ((𝑓(
·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↔ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅) |
35 | 32, 34 | mpbir 230 |
. . . . . . . . 9
⊢ (𝑓(
·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 |
36 | 35 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 ∪ ran ∪ ran ∪ ran 𝑅) |
37 | 36 | fmpttd 6971 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))):𝐼⟶𝒫 ∪ ran ∪ ran ∪ ran 𝑅) |
38 | | rnexg 7725 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑊 → ran 𝑅 ∈ V) |
39 | | uniexg 7571 |
. . . . . . . . . . 11
⊢ (ran
𝑅 ∈ V → ∪ ran 𝑅 ∈ V) |
40 | 5, 38, 39 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran 𝑅 ∈ V) |
41 | | rnexg 7725 |
. . . . . . . . . 10
⊢ (∪ ran 𝑅 ∈ V → ran ∪ ran 𝑅 ∈ V) |
42 | | uniexg 7571 |
. . . . . . . . . 10
⊢ (ran
∪ ran 𝑅 ∈ V → ∪ ran ∪ ran 𝑅 ∈ V) |
43 | 40, 41, 42 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ∪ ran 𝑅 ∈ V) |
44 | | rnexg 7725 |
. . . . . . . . 9
⊢ (∪ ran ∪ ran 𝑅 ∈ V → ran ∪ ran ∪ ran 𝑅 ∈ V) |
45 | | uniexg 7571 |
. . . . . . . . 9
⊢ (ran
∪ ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran ∪ ran 𝑅 ∈ V) |
46 | | pwexg 5296 |
. . . . . . . . 9
⊢ (∪ ran ∪ ran ∪ ran 𝑅 ∈ V → 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ∈ V) |
47 | 43, 44, 45, 46 | 4syl 19 |
. . . . . . . 8
⊢ (𝜑 → 𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ∈ V) |
48 | 5 | dmexd 7726 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑅 ∈ V) |
49 | 3, 48 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ V) |
50 | 47, 49 | elmapd 8587 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ (𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ↔ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))):𝐼⟶𝒫 ∪ ran ∪ ran ∪ ran 𝑅)) |
51 | 37, 50 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ (𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
52 | 51 | ralrimivw 3108 |
. . . . 5
⊢ (𝜑 → ∀𝑔 ∈ 𝐵 (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ (𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
53 | 52 | ralrimivw 3108 |
. . . 4
⊢ (𝜑 → ∀𝑓 ∈ 𝐾 ∀𝑔 ∈ 𝐵 (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ (𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
54 | | eqid 2738 |
. . . . 5
⊢ (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
55 | 54 | fmpo 7881 |
. . . 4
⊢
(∀𝑓 ∈
𝐾 ∀𝑔 ∈ 𝐵 (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ (𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ↔ (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
56 | 53, 55 | sylib 217 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
57 | 2 | fvexi 6770 |
. . . . 5
⊢ 𝐾 ∈ V |
58 | 6 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
59 | 57, 58 | xpex 7581 |
. . . 4
⊢ (𝐾 × 𝐵) ∈ V |
60 | | ovex 7288 |
. . . 4
⊢
(𝒫 ∪ ran ∪
ran ∪ ran 𝑅 ↑m 𝐼) ∈ V |
61 | | fex2 7754 |
. . . 4
⊢ (((𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∧ (𝐾 × 𝐵) ∈ V ∧ (𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∈ V) → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
62 | 59, 60, 61 | mp3an23 1451 |
. . 3
⊢ ((𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
63 | 56, 62 | syl 17 |
. 2
⊢ (𝜑 → (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) ∈ V) |
64 | | snsstp2 4747 |
. . . 4
⊢ {〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ⊆
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉} |
65 | | ssun2 4103 |
. . . 4
⊢
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉} ⊆ ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), (+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉}
∪ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
66 | 64, 65 | sstri 3926 |
. . 3
⊢ {〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ⊆ ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), (+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
67 | | ssun1 4102 |
. . 3
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ⊆ (({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), (+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉}
∪ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
68 | 66, 67 | sstri 3926 |
. 2
⊢ {〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ⊆
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
69 | 19, 20, 21, 63, 68 | prdsbaslem 17081 |
1
⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |