MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvsca Structured version   Visualization version   GIF version

Theorem prdsvsca 16784
Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
prdsvsca.k 𝐾 = (Base‘𝑆)
prdsvsca.m · = ( ·𝑠𝑃)
Assertion
Ref Expression
prdsvsca (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐾,𝑔   𝜑,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑃,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑆,𝑓,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝐾(𝑥)   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem prdsvsca
Dummy variables 𝑎 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 prdsvsca.k . . 3 𝐾 = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (𝜑𝑆𝑉)
5 prdsbas.r . . . 4 (𝜑𝑅𝑊)
6 prdsbas.b . . . 4 𝐵 = (Base‘𝑃)
71, 4, 5, 6, 3prdsbas 16781 . . 3 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
8 eqid 2759 . . . 4 (+g𝑃) = (+g𝑃)
91, 4, 5, 6, 3, 8prdsplusg 16782 . . 3 (𝜑 → (+g𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
10 eqid 2759 . . . 4 (.r𝑃) = (.r𝑃)
111, 4, 5, 6, 3, 10prdsmulr 16783 . . 3 (𝜑 → (.r𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
12 eqidd 2760 . . 3 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
13 eqidd 2760 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
14 eqidd 2760 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
15 eqidd 2760 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
16 eqidd 2760 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
17 eqidd 2760 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
18 eqidd 2760 . . 3 (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
191, 2, 3, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5prdsval 16779 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
20 prdsvsca.m . 2 · = ( ·𝑠𝑃)
21 vscaid 16686 . 2 ·𝑠 = Slot ( ·𝑠 ‘ndx)
22 ovssunirn 7187 . . . . . . . . . . 11 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ( ·𝑠 ‘(𝑅𝑥))
2321strfvss 16557 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
24 fvssunirn 6688 . . . . . . . . . . . . . 14 (𝑅𝑥) ⊆ ran 𝑅
25 rnss 5781 . . . . . . . . . . . . . 14 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
26 uniss 4807 . . . . . . . . . . . . . 14 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2724, 25, 26mp2b 10 . . . . . . . . . . . . 13 ran (𝑅𝑥) ⊆ ran ran 𝑅
2823, 27sstri 3902 . . . . . . . . . . . 12 ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran 𝑅
29 rnss 5781 . . . . . . . . . . . 12 (( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran 𝑅 → ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
30 uniss 4807 . . . . . . . . . . . 12 (ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅 ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
3128, 29, 30mp2b 10 . . . . . . . . . . 11 ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅
3222, 31sstri 3902 . . . . . . . . . 10 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅
33 ovex 7184 . . . . . . . . . . 11 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ V
3433elpw 4499 . . . . . . . . . 10 ((𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅 ↔ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅)
3532, 34mpbir 234 . . . . . . . . 9 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅
3635a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅)
3736fmpttd 6871 . . . . . . 7 (𝜑 → (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅)
38 rnexg 7615 . . . . . . . . . . 11 (𝑅𝑊 → ran 𝑅 ∈ V)
39 uniexg 7465 . . . . . . . . . . 11 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
405, 38, 393syl 18 . . . . . . . . . 10 (𝜑 ran 𝑅 ∈ V)
41 rnexg 7615 . . . . . . . . . 10 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
42 uniexg 7465 . . . . . . . . . 10 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
4340, 41, 423syl 18 . . . . . . . . 9 (𝜑 ran ran 𝑅 ∈ V)
44 rnexg 7615 . . . . . . . . 9 ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
45 uniexg 7465 . . . . . . . . 9 (ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
46 pwexg 5248 . . . . . . . . 9 ( ran ran ran 𝑅 ∈ V → 𝒫 ran ran ran 𝑅 ∈ V)
4743, 44, 45, 464syl 19 . . . . . . . 8 (𝜑 → 𝒫 ran ran ran 𝑅 ∈ V)
485dmexd 7616 . . . . . . . . 9 (𝜑 → dom 𝑅 ∈ V)
493, 48eqeltrrd 2854 . . . . . . . 8 (𝜑𝐼 ∈ V)
5047, 49elmapd 8431 . . . . . . 7 (𝜑 → ((𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼) ↔ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅))
5137, 50mpbird 260 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
5251ralrimivw 3115 . . . . 5 (𝜑 → ∀𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
5352ralrimivw 3115 . . . 4 (𝜑 → ∀𝑓𝐾𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼))
54 eqid 2759 . . . . 5 (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
5554fmpo 7771 . . . 4 (∀𝑓𝐾𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅m 𝐼) ↔ (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼))
5653, 55sylib 221 . . 3 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼))
572fvexi 6673 . . . . 5 𝐾 ∈ V
586fvexi 6673 . . . . 5 𝐵 ∈ V
5957, 58xpex 7475 . . . 4 (𝐾 × 𝐵) ∈ V
60 ovex 7184 . . . 4 (𝒫 ran ran ran 𝑅m 𝐼) ∈ V
61 fex2 7644 . . . 4 (((𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼) ∧ (𝐾 × 𝐵) ∈ V ∧ (𝒫 ran ran ran 𝑅m 𝐼) ∈ V) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6259, 60, 61mp3an23 1451 . . 3 ((𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅m 𝐼) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6356, 62syl 17 . 2 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
64 snsstp2 4708 . . . 4 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}
65 ssun2 4079 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
6664, 65sstri 3902 . . 3 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
67 ssun1 4078 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
6866, 67sstri 3902 . 2 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ ((2nd𝑎)(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
6919, 20, 21, 63, 68prdsvallem 16778 1 (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  Vcvv 3410  cun 3857  wss 3859  𝒫 cpw 4495  {csn 4523  {cpr 4525  {ctp 4527  cop 4529   cuni 4799   class class class wbr 5033  {copab 5095  cmpt 5113   × cxp 5523  dom cdm 5525  ran crn 5526  ccom 5529  wf 6332  cfv 6336  (class class class)co 7151  cmpo 7153  1st c1st 7692  2nd c2nd 7693  m cmap 8417  Xcixp 8480  supcsup 8930  0cc0 10568  *cxr 10705   < clt 10706  ndxcnx 16531  Basecbs 16534  +gcplusg 16616  .rcmulr 16617  Scalarcsca 16619   ·𝑠 cvsca 16620  ·𝑖cip 16621  TopSetcts 16622  lecple 16623  distcds 16625  Hom chom 16627  compcco 16628  TopOpenctopn 16746  tcpt 16763   Σg cgsu 16765  Xscprds 16770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8932  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-fz 12933  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-plusg 16629  df-mulr 16630  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-hom 16640  df-cco 16641  df-prds 16772
This theorem is referenced by:  prdsle  16786  prdsds  16788  prdstset  16790  prdshom  16791  prdsco  16792  prdsvscaval  16803
  Copyright terms: Public domain W3C validator