MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasle Structured version   Visualization version   GIF version

Theorem imasle 16795
Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasle.n 𝑁 = (le‘𝑅)
imasle.l = (le‘𝑈)
Assertion
Ref Expression
imasle (𝜑 = ((𝐹𝑁) ∘ 𝐹))

Proof of Theorem imasle
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2821 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2821 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2821 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2821 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2821 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2821 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
9 eqid 2821 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
10 eqid 2821 . . 3 (dist‘𝑅) = (dist‘𝑅)
11 imasle.n . . 3 𝑁 = (le‘𝑅)
12 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . 4 (𝜑𝑅𝑍)
14 eqid 2821 . . . 4 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 16789 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqid 2821 . . . 4 (.r𝑈) = (.r𝑈)
171, 2, 12, 13, 4, 16imasmulr 16790 . . 3 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
18 eqid 2821 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 16792 . . 3 (𝜑 → ( ·𝑠𝑈) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
20 eqidd 2822 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
21 eqid 2821 . . . 4 (TopSet‘𝑈) = (TopSet‘𝑈)
221, 2, 12, 13, 9, 21imastset 16794 . . 3 (𝜑 → (TopSet‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
23 eqid 2821 . . . 4 (dist‘𝑈) = (dist‘𝑈)
241, 2, 12, 13, 10, 23imasds 16785 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑m (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
25 eqidd 2822 . . 3 (𝜑 → ((𝐹𝑁) ∘ 𝐹) = ((𝐹𝑁) ∘ 𝐹))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 22, 24, 25, 12, 13imasval 16783 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
27 eqid 2821 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2827imasvalstr 16724 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
29 pleid 16666 . 2 le = Slot (le‘ndx)
30 snsstp2 4749 . . 3 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}
31 ssun2 4148 . . 3 {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3230, 31sstri 3975 . 2 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
33 fof 6589 . . . . . 6 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
3412, 33syl 17 . . . . 5 (𝜑𝐹:𝑉𝐵)
35 fvex 6682 . . . . . 6 (Base‘𝑅) ∈ V
362, 35eqeltrdi 2921 . . . . 5 (𝜑𝑉 ∈ V)
37 fex 6988 . . . . 5 ((𝐹:𝑉𝐵𝑉 ∈ V) → 𝐹 ∈ V)
3834, 36, 37syl2anc 586 . . . 4 (𝜑𝐹 ∈ V)
3911fvexi 6683 . . . 4 𝑁 ∈ V
40 coexg 7633 . . . 4 ((𝐹 ∈ V ∧ 𝑁 ∈ V) → (𝐹𝑁) ∈ V)
4138, 39, 40sylancl 588 . . 3 (𝜑 → (𝐹𝑁) ∈ V)
42 cnvexg 7628 . . . 4 (𝐹 ∈ V → 𝐹 ∈ V)
4338, 42syl 17 . . 3 (𝜑𝐹 ∈ V)
44 coexg 7633 . . 3 (((𝐹𝑁) ∈ V ∧ 𝐹 ∈ V) → ((𝐹𝑁) ∘ 𝐹) ∈ V)
4541, 43, 44syl2anc 586 . 2 (𝜑 → ((𝐹𝑁) ∘ 𝐹) ∈ V)
46 imasle.l . 2 = (le‘𝑈)
4726, 28, 29, 32, 45, 46strfv3 16531 1 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  Vcvv 3494  cun 3933  {csn 4566  {ctp 4570  cop 4572   ciun 4918  ccnv 5553  ccom 5558  wf 6350  ontowfo 6352  cfv 6354  (class class class)co 7155  1c1 10537  2c2 11691  cdc 12097  ndxcnx 16479  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  Scalarcsca 16567   ·𝑠 cvsca 16568  ·𝑖cip 16569  TopSetcts 16570  lecple 16571  distcds 16573  TopOpenctopn 16694  s cimas 16776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-imas 16780
This theorem is referenced by:  imasless  16812  imasleval  16813
  Copyright terms: Public domain W3C validator