MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasle Structured version   Visualization version   GIF version

Theorem imasle 17151
Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasle.n 𝑁 = (le‘𝑅)
imasle.l = (le‘𝑈)
Assertion
Ref Expression
imasle (𝜑 = ((𝐹𝑁) ∘ 𝐹))

Proof of Theorem imasle
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2738 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2738 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2738 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2738 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
9 eqid 2738 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
10 eqid 2738 . . 3 (dist‘𝑅) = (dist‘𝑅)
11 imasle.n . . 3 𝑁 = (le‘𝑅)
12 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . 4 (𝜑𝑅𝑍)
14 eqid 2738 . . . 4 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 17145 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqid 2738 . . . 4 (.r𝑈) = (.r𝑈)
171, 2, 12, 13, 4, 16imasmulr 17146 . . 3 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
18 eqid 2738 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 17148 . . 3 (𝜑 → ( ·𝑠𝑈) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
20 eqidd 2739 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
21 eqid 2738 . . . 4 (TopSet‘𝑈) = (TopSet‘𝑈)
221, 2, 12, 13, 9, 21imastset 17150 . . 3 (𝜑 → (TopSet‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
23 eqid 2738 . . . 4 (dist‘𝑈) = (dist‘𝑈)
241, 2, 12, 13, 10, 23imasds 17141 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑m (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
25 eqidd 2739 . . 3 (𝜑 → ((𝐹𝑁) ∘ 𝐹) = ((𝐹𝑁) ∘ 𝐹))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 22, 24, 25, 12, 13imasval 17139 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
27 eqid 2738 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2827imasvalstr 17079 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
29 pleid 17001 . 2 le = Slot (le‘ndx)
30 snsstp2 4747 . . 3 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}
31 ssun2 4103 . . 3 {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3230, 31sstri 3926 . 2 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
33 fof 6672 . . . . . 6 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
3412, 33syl 17 . . . . 5 (𝜑𝐹:𝑉𝐵)
35 fvex 6769 . . . . . 6 (Base‘𝑅) ∈ V
362, 35eqeltrdi 2847 . . . . 5 (𝜑𝑉 ∈ V)
3734, 36fexd 7085 . . . 4 (𝜑𝐹 ∈ V)
3811fvexi 6770 . . . 4 𝑁 ∈ V
39 coexg 7750 . . . 4 ((𝐹 ∈ V ∧ 𝑁 ∈ V) → (𝐹𝑁) ∈ V)
4037, 38, 39sylancl 585 . . 3 (𝜑 → (𝐹𝑁) ∈ V)
41 cnvexg 7745 . . . 4 (𝐹 ∈ V → 𝐹 ∈ V)
4237, 41syl 17 . . 3 (𝜑𝐹 ∈ V)
43 coexg 7750 . . 3 (((𝐹𝑁) ∈ V ∧ 𝐹 ∈ V) → ((𝐹𝑁) ∘ 𝐹) ∈ V)
4440, 42, 43syl2anc 583 . 2 (𝜑 → ((𝐹𝑁) ∘ 𝐹) ∈ V)
45 imasle.l . 2 = (le‘𝑈)
4626, 28, 29, 32, 44, 45strfv3 16834 1 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  {csn 4558  {ctp 4562  cop 4564   ciun 4921  ccnv 5579  ccom 5584  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  1c1 10803  2c2 11958  cdc 12366  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  ·𝑖cip 16893  TopSetcts 16894  lecple 16895  distcds 16897  TopOpenctopn 17049  s cimas 17132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-imas 17136
This theorem is referenced by:  imasless  17168  imasleval  17169
  Copyright terms: Public domain W3C validator