MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasle Structured version   Visualization version   GIF version

Theorem imasle 17427
Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasle.n 𝑁 = (le‘𝑅)
imasle.l = (le‘𝑈)
Assertion
Ref Expression
imasle (𝜑 = ((𝐹𝑁) ∘ 𝐹))

Proof of Theorem imasle
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2731 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2731 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2731 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2731 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2731 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
9 eqid 2731 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
10 eqid 2731 . . 3 (dist‘𝑅) = (dist‘𝑅)
11 imasle.n . . 3 𝑁 = (le‘𝑅)
12 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . 4 (𝜑𝑅𝑍)
14 eqid 2731 . . . 4 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 17421 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqid 2731 . . . 4 (.r𝑈) = (.r𝑈)
171, 2, 12, 13, 4, 16imasmulr 17422 . . 3 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
18 eqid 2731 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 17424 . . 3 (𝜑 → ( ·𝑠𝑈) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
20 eqidd 2732 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
21 eqid 2731 . . . 4 (TopSet‘𝑈) = (TopSet‘𝑈)
221, 2, 12, 13, 9, 21imastset 17426 . . 3 (𝜑 → (TopSet‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
23 eqid 2731 . . . 4 (dist‘𝑈) = (dist‘𝑈)
241, 2, 12, 13, 10, 23imasds 17417 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑m (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
25 eqidd 2732 . . 3 (𝜑 → ((𝐹𝑁) ∘ 𝐹) = ((𝐹𝑁) ∘ 𝐹))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 22, 24, 25, 12, 13imasval 17415 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
27 eqid 2731 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2827imasvalstr 17355 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
29 pleid 17271 . 2 le = Slot (le‘ndx)
30 snsstp2 4766 . . 3 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}
31 ssun2 4126 . . 3 {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3230, 31sstri 3939 . 2 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
33 fof 6735 . . . . . 6 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
3412, 33syl 17 . . . . 5 (𝜑𝐹:𝑉𝐵)
35 fvex 6835 . . . . . 6 (Base‘𝑅) ∈ V
362, 35eqeltrdi 2839 . . . . 5 (𝜑𝑉 ∈ V)
3734, 36fexd 7161 . . . 4 (𝜑𝐹 ∈ V)
3811fvexi 6836 . . . 4 𝑁 ∈ V
39 coexg 7859 . . . 4 ((𝐹 ∈ V ∧ 𝑁 ∈ V) → (𝐹𝑁) ∈ V)
4037, 38, 39sylancl 586 . . 3 (𝜑 → (𝐹𝑁) ∈ V)
41 cnvexg 7854 . . . 4 (𝐹 ∈ V → 𝐹 ∈ V)
4237, 41syl 17 . . 3 (𝜑𝐹 ∈ V)
43 coexg 7859 . . 3 (((𝐹𝑁) ∈ V ∧ 𝐹 ∈ V) → ((𝐹𝑁) ∘ 𝐹) ∈ V)
4440, 42, 43syl2anc 584 . 2 (𝜑 → ((𝐹𝑁) ∘ 𝐹) ∈ V)
45 imasle.l . 2 = (le‘𝑈)
4626, 28, 29, 32, 44, 45strfv3 17115 1 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  {csn 4573  {ctp 4577  cop 4579   ciun 4939  ccnv 5613  ccom 5618  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  1c1 11007  2c2 12180  cdc 12588  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  ·𝑖cip 17166  TopSetcts 17167  lecple 17168  distcds 17170  TopOpenctopn 17325  s cimas 17408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-imas 17412
This theorem is referenced by:  imasless  17444  imasleval  17445
  Copyright terms: Public domain W3C validator