MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasle Structured version   Visualization version   GIF version

Theorem imasle 17301
Description: The ordering of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasle.n 𝑁 = (le‘𝑅)
imasle.l = (le‘𝑈)
Assertion
Ref Expression
imasle (𝜑 = ((𝐹𝑁) ∘ 𝐹))

Proof of Theorem imasle
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2737 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2737 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2737 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2737 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2737 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2737 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
9 eqid 2737 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
10 eqid 2737 . . 3 (dist‘𝑅) = (dist‘𝑅)
11 imasle.n . . 3 𝑁 = (le‘𝑅)
12 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . 4 (𝜑𝑅𝑍)
14 eqid 2737 . . . 4 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 17295 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqid 2737 . . . 4 (.r𝑈) = (.r𝑈)
171, 2, 12, 13, 4, 16imasmulr 17296 . . 3 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
18 eqid 2737 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 17298 . . 3 (𝜑 → ( ·𝑠𝑈) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
20 eqidd 2738 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
21 eqid 2737 . . . 4 (TopSet‘𝑈) = (TopSet‘𝑈)
221, 2, 12, 13, 9, 21imastset 17300 . . 3 (𝜑 → (TopSet‘𝑈) = ((TopOpen‘𝑅) qTop 𝐹))
23 eqid 2737 . . . 4 (dist‘𝑈) = (dist‘𝑈)
241, 2, 12, 13, 10, 23imasds 17291 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑m (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
25 eqidd 2738 . . 3 (𝜑 → ((𝐹𝑁) ∘ 𝐹) = ((𝐹𝑁) ∘ 𝐹))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 22, 24, 25, 12, 13imasval 17289 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
27 eqid 2737 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2827imasvalstr 17229 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
29 pleid 17144 . 2 le = Slot (le‘ndx)
30 snsstp2 4760 . . 3 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}
31 ssun2 4117 . . 3 {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3230, 31sstri 3939 . 2 {⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (TopSet‘𝑈)⟩, ⟨(le‘ndx), ((𝐹𝑁) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
33 fof 6723 . . . . . 6 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
3412, 33syl 17 . . . . 5 (𝜑𝐹:𝑉𝐵)
35 fvex 6822 . . . . . 6 (Base‘𝑅) ∈ V
362, 35eqeltrdi 2846 . . . . 5 (𝜑𝑉 ∈ V)
3734, 36fexd 7140 . . . 4 (𝜑𝐹 ∈ V)
3811fvexi 6823 . . . 4 𝑁 ∈ V
39 coexg 7819 . . . 4 ((𝐹 ∈ V ∧ 𝑁 ∈ V) → (𝐹𝑁) ∈ V)
4037, 38, 39sylancl 586 . . 3 (𝜑 → (𝐹𝑁) ∈ V)
41 cnvexg 7814 . . . 4 (𝐹 ∈ V → 𝐹 ∈ V)
4237, 41syl 17 . . 3 (𝜑𝐹 ∈ V)
43 coexg 7819 . . 3 (((𝐹𝑁) ∈ V ∧ 𝐹 ∈ V) → ((𝐹𝑁) ∘ 𝐹) ∈ V)
4440, 42, 43syl2anc 584 . 2 (𝜑 → ((𝐹𝑁) ∘ 𝐹) ∈ V)
45 imasle.l . 2 = (le‘𝑈)
4626, 28, 29, 32, 44, 45strfv3 16973 1 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cun 3894  {csn 4569  {ctp 4573  cop 4575   ciun 4935  ccnv 5604  ccom 5609  wf 6459  ontowfo 6461  cfv 6463  (class class class)co 7313  1c1 10942  2c2 12098  cdc 12507  ndxcnx 16961  Basecbs 16979  +gcplusg 17029  .rcmulr 17030  Scalarcsca 17032   ·𝑠 cvsca 17033  ·𝑖cip 17034  TopSetcts 17035  lecple 17036  distcds 17038  TopOpenctopn 17199  s cimas 17282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-fz 13310  df-struct 16915  df-slot 16950  df-ndx 16962  df-base 16980  df-plusg 17042  df-mulr 17043  df-sca 17045  df-vsca 17046  df-ip 17047  df-tset 17048  df-ple 17049  df-ds 17051  df-imas 17286
This theorem is referenced by:  imasless  17318  imasleval  17319
  Copyright terms: Public domain W3C validator