| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catchomfval | Structured version Visualization version GIF version | ||
| Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| catchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| catchomfval | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catchomfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 2 | catcbas.c | . . . . 5 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 3 | catcbas.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | catcbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 2, 4, 3 | catcbas 18026 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 6 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) | |
| 7 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) | |
| 8 | 2, 3, 5, 6, 7 | catcval 18025 | . . . 4 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |
| 9 | 8 | fveq2d 6830 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 10 | 1, 9 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 11 | 4 | fvexi 6840 | . . . 4 ⊢ 𝐵 ∈ V |
| 12 | 11, 11 | mpoex 8021 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) ∈ V |
| 13 | catstr 17885 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} Struct 〈1, ;15〉 | |
| 14 | homid 17334 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
| 15 | snsstp2 4771 | . . . 4 ⊢ {〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} | |
| 16 | 13, 14, 15 | strfv 17132 | . . 3 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 17 | 12, 16 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 18 | 10, 17 | eqtr4d 2767 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {ctp 4583 〈cop 4585 × cxp 5621 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 2nd c2nd 7930 1c1 11029 5c5 12204 ;cdc 12609 ndxcnx 17122 Basecbs 17138 Hom chom 17190 compcco 17191 Func cfunc 17779 ∘func ccofu 17781 CatCatccatc 18023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-catc 18024 |
| This theorem is referenced by: catchom 18028 catccofval 18029 catcrcl2 49382 |
| Copyright terms: Public domain | W3C validator |