| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > catchomfval | Structured version Visualization version GIF version | ||
| Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| catchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| catchomfval | ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catchomfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 2 | catcbas.c | . . . . 5 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 3 | catcbas.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | catcbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 2, 4, 3 | catcbas 18070 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 6 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) | |
| 7 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) | |
| 8 | 2, 3, 5, 6, 7 | catcval 18069 | . . . 4 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |
| 9 | 8 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 10 | 1, 9 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 11 | 4 | fvexi 6875 | . . . 4 ⊢ 𝐵 ∈ V |
| 12 | 11, 11 | mpoex 8061 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) ∈ V |
| 13 | catstr 17929 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} Struct 〈1, ;15〉 | |
| 14 | homid 17382 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
| 15 | snsstp2 4784 | . . . 4 ⊢ {〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} | |
| 16 | 13, 14, 15 | strfv 17180 | . . 3 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) ∈ V → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 17 | 12, 16 | mp1i 13 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦)) = (Hom ‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉})) |
| 18 | 10, 17 | eqtr4d 2768 | 1 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {ctp 4596 〈cop 4598 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 2nd c2nd 7970 1c1 11076 5c5 12251 ;cdc 12656 ndxcnx 17170 Basecbs 17186 Hom chom 17238 compcco 17239 Func cfunc 17823 ∘func ccofu 17825 CatCatccatc 18067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-catc 18068 |
| This theorem is referenced by: catchom 18072 catccofval 18073 catcrcl2 49389 |
| Copyright terms: Public domain | W3C validator |