MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuchom Structured version   Visualization version   GIF version

Theorem fuchom 17219
Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucbas.q 𝑄 = (𝐶 FuncCat 𝐷)
fuchom.n 𝑁 = (𝐶 Nat 𝐷)
Assertion
Ref Expression
fuchom 𝑁 = (Hom ‘𝑄)

Proof of Theorem fuchom
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucbas.q . . . . 5 𝑄 = (𝐶 FuncCat 𝐷)
2 eqid 2818 . . . . 5 (𝐶 Func 𝐷) = (𝐶 Func 𝐷)
3 fuchom.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
4 eqid 2818 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2818 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
6 simpl 483 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat)
7 simpr 485 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat)
8 eqid 2818 . . . . . 6 (comp‘𝑄) = (comp‘𝑄)
91, 2, 3, 4, 5, 6, 7, 8fuccofval 17217 . . . . 5 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ∈ (𝐶 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
101, 2, 3, 4, 5, 6, 7, 9fucval 17216 . . . 4 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {⟨(Base‘ndx), (𝐶 Func 𝐷)⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), (comp‘𝑄)⟩})
11 catstr 17215 . . . 4 {⟨(Base‘ndx), (𝐶 Func 𝐷)⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), (comp‘𝑄)⟩} Struct ⟨1, 15⟩
12 homid 16676 . . . 4 Hom = Slot (Hom ‘ndx)
13 snsstp2 4742 . . . 4 {⟨(Hom ‘ndx), 𝑁⟩} ⊆ {⟨(Base‘ndx), (𝐶 Func 𝐷)⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), (comp‘𝑄)⟩}
143ovexi 7179 . . . . 5 𝑁 ∈ V
1514a1i 11 . . . 4 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 ∈ V)
16 eqid 2818 . . . 4 (Hom ‘𝑄) = (Hom ‘𝑄)
1710, 11, 12, 13, 15, 16strfv3 16520 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = 𝑁)
1817eqcomd 2824 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄))
19 df-hom 16577 . . . 4 Hom = Slot 14
2019str0 16523 . . 3 ∅ = (Hom ‘∅)
213natffn 17207 . . . . 5 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))
22 funcrcl 17121 . . . . . . . . . 10 (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2322con3i 157 . . . . . . . . 9 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷))
2423eq0rdv 4354 . . . . . . . 8 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅)
2524xpeq2d 5578 . . . . . . 7 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ((𝐶 Func 𝐷) × ∅))
26 xp0 6008 . . . . . . 7 ((𝐶 Func 𝐷) × ∅) = ∅
2725, 26syl6eq 2869 . . . . . 6 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ∅)
2827fneq2d 6440 . . . . 5 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ 𝑁 Fn ∅))
2921, 28mpbii 234 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 Fn ∅)
30 fn0 6472 . . . 4 (𝑁 Fn ∅ ↔ 𝑁 = ∅)
3129, 30sylib 219 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = ∅)
32 fnfuc 17203 . . . . . . 7 FuncCat Fn (Cat × Cat)
33 fndm 6448 . . . . . . 7 ( FuncCat Fn (Cat × Cat) → dom FuncCat = (Cat × Cat))
3432, 33ax-mp 5 . . . . . 6 dom FuncCat = (Cat × Cat)
3534ndmov 7321 . . . . 5 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅)
361, 35syl5eq 2865 . . . 4 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅)
3736fveq2d 6667 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = (Hom ‘∅))
3820, 31, 373eqtr4a 2879 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄))
3918, 38pm2.61i 183 1 𝑁 = (Hom ‘𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  c0 4288  {ctp 4561  cop 4563   × cxp 5546  dom cdm 5548   Fn wfn 6343  cfv 6348  (class class class)co 7145  1c1 10526  4c4 11682  5c5 11683  cdc 12086  ndxcnx 16468  Basecbs 16471  Hom chom 16564  compcco 16565  Catccat 16923   Func cfunc 17112   Nat cnat 17199   FuncCat cfuc 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-hom 16577  df-cco 16578  df-func 17116  df-nat 17201  df-fuc 17202
This theorem is referenced by:  fuccatid  17227  fucsect  17230  fuciso  17233  evlfcllem  17459  evlfcl  17460  curfcl  17470  uncf2  17475  curfuncf  17476  diag2cl  17484  curf2ndf  17485  yonedalem21  17511  yonedalem22  17516  yonedalem3b  17517  yonedalem3  17518  yonffthlem  17520
  Copyright terms: Public domain W3C validator