Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fuchom | Structured version Visualization version GIF version |
Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
Ref | Expression |
---|---|
fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fuchom.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
Ref | Expression |
---|---|
fuchom | ⊢ 𝑁 = (Hom ‘𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | eqid 2737 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
3 | fuchom.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | eqid 2737 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | simpl 486 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
7 | simpr 488 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
8 | eqid 2737 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 17467 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 17466 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
11 | catstr 17465 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
12 | homid 16919 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
13 | snsstp2 4730 | . . . 4 ⊢ {〈(Hom ‘ndx), 𝑁〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
14 | 3 | ovexi 7247 | . . . . 5 ⊢ 𝑁 ∈ V |
15 | 14 | a1i 11 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 ∈ V) |
16 | eqid 2737 | . . . 4 ⊢ (Hom ‘𝑄) = (Hom ‘𝑄) | |
17 | 10, 11, 12, 13, 15, 16 | strfv3 16755 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = 𝑁) |
18 | 17 | eqcomd 2743 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
19 | 12 | str0 16742 | . . 3 ⊢ ∅ = (Hom ‘∅) |
20 | 3 | natffn 17456 | . . . . 5 ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
21 | funcrcl 17369 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
22 | 21 | con3i 157 | . . . . . . . . 9 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
23 | 22 | eq0rdv 4319 | . . . . . . . 8 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
24 | 23 | xpeq2d 5581 | . . . . . . 7 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ((𝐶 Func 𝐷) × ∅)) |
25 | xp0 6021 | . . . . . . 7 ⊢ ((𝐶 Func 𝐷) × ∅) = ∅ | |
26 | 24, 25 | eqtrdi 2794 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ∅) |
27 | 26 | fneq2d 6473 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ 𝑁 Fn ∅)) |
28 | 20, 27 | mpbii 236 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 Fn ∅) |
29 | fn0 6509 | . . . 4 ⊢ (𝑁 Fn ∅ ↔ 𝑁 = ∅) | |
30 | 28, 29 | sylib 221 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = ∅) |
31 | fnfuc 17452 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
32 | 31 | fndmi 6482 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
33 | 32 | ndmov 7392 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
34 | 1, 33 | syl5eq 2790 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
35 | 34 | fveq2d 6721 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = (Hom ‘∅)) |
36 | 19, 30, 35 | 3eqtr4a 2804 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
37 | 18, 36 | pm2.61i 185 | 1 ⊢ 𝑁 = (Hom ‘𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 {ctp 4545 〈cop 4547 × cxp 5549 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 1c1 10730 5c5 11888 ;cdc 12293 ndxcnx 16744 Basecbs 16760 Hom chom 16813 compcco 16814 Catccat 17167 Func cfunc 17360 Nat cnat 17448 FuncCat cfuc 17449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-hom 16826 df-cco 16827 df-func 17364 df-nat 17450 df-fuc 17451 |
This theorem is referenced by: fuccatid 17478 fucsect 17481 fuciso 17484 evlfcllem 17729 evlfcl 17730 curfcl 17740 uncf2 17745 curfuncf 17746 diag2cl 17754 curf2ndf 17755 yonedalem21 17781 yonedalem22 17786 yonedalem3b 17787 yonedalem3 17788 yonffthlem 17790 |
Copyright terms: Public domain | W3C validator |