![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fuchom | Structured version Visualization version GIF version |
Description: The morphisms in the functor category are natural transformations. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
Ref | Expression |
---|---|
fucbas.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fuchom.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
Ref | Expression |
---|---|
fuchom | ⊢ 𝑁 = (Hom ‘𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucbas.q | . . . . 5 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | eqid 2733 | . . . . 5 ⊢ (𝐶 Func 𝐷) = (𝐶 Func 𝐷) | |
3 | fuchom.n | . . . . 5 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | eqid 2733 | . . . . 5 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | simpl 484 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐶 ∈ Cat) | |
7 | simpr 486 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝐷 ∈ Cat) | |
8 | eqid 2733 | . . . . . 6 ⊢ (comp‘𝑄) = (comp‘𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fuccofval 17898 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (comp‘𝑄) = (𝑣 ∈ ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)), ℎ ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | fucval 17897 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉}) |
11 | catstr 17896 | . . . 4 ⊢ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} Struct 〈1, ;15〉 | |
12 | homid 17344 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
13 | snsstp2 4816 | . . . 4 ⊢ {〈(Hom ‘ndx), 𝑁〉} ⊆ {〈(Base‘ndx), (𝐶 Func 𝐷)〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (comp‘𝑄)〉} | |
14 | 3 | ovexi 7430 | . . . . 5 ⊢ 𝑁 ∈ V |
15 | 14 | a1i 11 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 ∈ V) |
16 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝑄) = (Hom ‘𝑄) | |
17 | 10, 11, 12, 13, 15, 16 | strfv3 17125 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = 𝑁) |
18 | 17 | eqcomd 2739 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
19 | 12 | str0 17109 | . . 3 ⊢ ∅ = (Hom ‘∅) |
20 | 3 | natffn 17887 | . . . . 5 ⊢ 𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
21 | funcrcl 17800 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) | |
22 | 21 | con3i 154 | . . . . . . . . 9 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ¬ 𝑓 ∈ (𝐶 Func 𝐷)) |
23 | 22 | eq0rdv 4402 | . . . . . . . 8 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Func 𝐷) = ∅) |
24 | 23 | xpeq2d 5702 | . . . . . . 7 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ((𝐶 Func 𝐷) × ∅)) |
25 | xp0 6149 | . . . . . . 7 ⊢ ((𝐶 Func 𝐷) × ∅) = ∅ | |
26 | 24, 25 | eqtrdi 2789 | . . . . . 6 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) = ∅) |
27 | 26 | fneq2d 6635 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝑁 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ 𝑁 Fn ∅)) |
28 | 20, 27 | mpbii 232 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 Fn ∅) |
29 | fn0 6671 | . . . 4 ⊢ (𝑁 Fn ∅ ↔ 𝑁 = ∅) | |
30 | 28, 29 | sylib 217 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = ∅) |
31 | fnfuc 17883 | . . . . . . 7 ⊢ FuncCat Fn (Cat × Cat) | |
32 | 31 | fndmi 6645 | . . . . . 6 ⊢ dom FuncCat = (Cat × Cat) |
33 | 32 | ndmov 7578 | . . . . 5 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 FuncCat 𝐷) = ∅) |
34 | 1, 33 | eqtrid 2785 | . . . 4 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑄 = ∅) |
35 | 34 | fveq2d 6885 | . . 3 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (Hom ‘𝑄) = (Hom ‘∅)) |
36 | 19, 30, 35 | 3eqtr4a 2799 | . 2 ⊢ (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → 𝑁 = (Hom ‘𝑄)) |
37 | 18, 36 | pm2.61i 182 | 1 ⊢ 𝑁 = (Hom ‘𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4320 {ctp 4628 〈cop 4630 × cxp 5670 Fn wfn 6530 ‘cfv 6535 (class class class)co 7396 1c1 11098 5c5 12257 ;cdc 12664 ndxcnx 17113 Basecbs 17131 Hom chom 17195 compcco 17196 Catccat 17595 Func cfunc 17791 Nat cnat 17879 FuncCat cfuc 17880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-ixp 8880 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-dec 12665 df-uz 12810 df-fz 13472 df-struct 17067 df-slot 17102 df-ndx 17114 df-base 17132 df-hom 17208 df-cco 17209 df-func 17795 df-nat 17881 df-fuc 17882 |
This theorem is referenced by: fuccatid 17909 fucsect 17912 fuciso 17915 evlfcllem 18161 evlfcl 18162 curfcl 18172 uncf2 18177 curfuncf 18178 diag2cl 18186 curf2ndf 18187 yonedalem21 18213 yonedalem22 18218 yonedalem3b 18219 yonedalem3 18220 yonffthlem 18222 |
Copyright terms: Public domain | W3C validator |