| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
| 4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
| 5 | 1, 2, 3, 4 | ifbothda 4539 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: ifcl 4546 keephyp 4572 soltmin 6125 xrmaxlt 13195 xrltmin 13196 xrmaxle 13197 xrlemin 13198 ifle 13211 expmulnbnd 14251 limsupgre 15495 isumless 15859 cvgrat 15897 rpnnen2lem4 16233 ruclem2 16248 sadcaddlem 16474 sadadd3 16478 pcmptdvds 16912 prmreclem5 16938 prmreclem6 16939 pnfnei 23156 mnfnei 23157 xkopt 23591 xmetrtri2 24293 stdbdxmet 24452 stdbdmet 24453 stdbdmopn 24455 xrsxmet 24747 icccmplem2 24761 metdscn 24794 metnrmlem1a 24796 ivthlem2 25403 ovolicc2lem5 25472 ioombl1lem1 25509 ioombl1lem4 25512 ismbfd 25590 mbfi1fseqlem4 25669 mbfi1fseqlem5 25670 itg2const 25691 itg2const2 25692 itg2monolem3 25703 itg2gt0 25711 itg2cnlem1 25712 itg2cnlem2 25713 iblss 25756 itgless 25768 ibladdlem 25771 iblabsr 25781 iblmulc2 25782 bddiblnc 25793 dvferm1lem 25938 dvferm2lem 25940 dvlip2 25950 dgradd2 26224 plydiveu 26256 chtppilim 27436 dchrvmasumiflem1 27462 ostth3 27599 1smat1 33781 poimirlem24 37614 mblfinlem2 37628 itg2addnclem 37641 itg2addnc 37644 itg2gt0cn 37645 ibladdnclem 37646 iblmulc2nc 37655 ftc1anclem5 37667 ftc1anclem8 37670 ftc1anc 37671 |
| Copyright terms: Public domain | W3C validator |