![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
5 | 1, 2, 3, 4 | ifbothda 4567 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: ifcl 4574 keephyp 4600 soltmin 6138 xrmaxlt 13160 xrltmin 13161 xrmaxle 13162 xrlemin 13163 ifle 13176 expmulnbnd 14198 limsupgre 15425 isumless 15791 cvgrat 15829 rpnnen2lem4 16160 ruclem2 16175 sadcaddlem 16398 sadadd3 16402 pcmptdvds 16827 prmreclem5 16853 prmreclem6 16854 pnfnei 22724 mnfnei 22725 xkopt 23159 xmetrtri2 23862 stdbdxmet 24024 stdbdmet 24025 stdbdmopn 24027 xrsxmet 24325 icccmplem2 24339 metdscn 24372 metnrmlem1a 24374 ivthlem2 24969 ovolicc2lem5 25038 ioombl1lem1 25075 ioombl1lem4 25078 ismbfd 25156 mbfi1fseqlem4 25236 mbfi1fseqlem5 25237 itg2const 25258 itg2const2 25259 itg2monolem3 25270 itg2gt0 25278 itg2cnlem1 25279 itg2cnlem2 25280 iblss 25322 itgless 25334 ibladdlem 25337 iblabsr 25347 iblmulc2 25348 bddiblnc 25359 dvferm1lem 25501 dvferm2lem 25503 dvlip2 25512 dgradd2 25782 plydiveu 25811 chtppilim 26978 dchrvmasumiflem1 27004 ostth3 27141 1smat1 32784 poimirlem24 36512 mblfinlem2 36526 itg2addnclem 36539 itg2addnc 36542 itg2gt0cn 36543 ibladdnclem 36544 iblmulc2nc 36553 ftc1anclem5 36565 ftc1anclem8 36568 ftc1anc 36569 |
Copyright terms: Public domain | W3C validator |