Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
3 | simpll 767 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
4 | simplr 769 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
5 | 1, 2, 3, 4 | ifbothda 4477 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ifcif 4439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-if 4440 |
This theorem is referenced by: ifcl 4484 keephyp 4510 soltmin 6001 xrmaxlt 12771 xrltmin 12772 xrmaxle 12773 xrlemin 12774 ifle 12787 expmulnbnd 13802 limsupgre 15042 isumless 15409 cvgrat 15447 rpnnen2lem4 15778 ruclem2 15793 sadcaddlem 16016 sadadd3 16020 pcmptdvds 16447 prmreclem5 16473 prmreclem6 16474 pnfnei 22117 mnfnei 22118 xkopt 22552 xmetrtri2 23254 stdbdxmet 23413 stdbdmet 23414 stdbdmopn 23416 xrsxmet 23706 icccmplem2 23720 metdscn 23753 metnrmlem1a 23755 ivthlem2 24349 ovolicc2lem5 24418 ioombl1lem1 24455 ioombl1lem4 24458 ismbfd 24536 mbfi1fseqlem4 24616 mbfi1fseqlem5 24617 itg2const 24638 itg2const2 24639 itg2monolem3 24650 itg2gt0 24658 itg2cnlem1 24659 itg2cnlem2 24660 iblss 24702 itgless 24714 ibladdlem 24717 iblabsr 24727 iblmulc2 24728 bddiblnc 24739 dvferm1lem 24881 dvferm2lem 24883 dvlip2 24892 dgradd2 25162 plydiveu 25191 chtppilim 26356 dchrvmasumiflem1 26382 ostth3 26519 1smat1 31468 poimirlem24 35538 mblfinlem2 35552 itg2addnclem 35565 itg2addnc 35568 itg2gt0cn 35569 ibladdnclem 35570 iblmulc2nc 35579 ftc1anclem5 35591 ftc1anclem8 35594 ftc1anc 35595 |
Copyright terms: Public domain | W3C validator |