| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
| 4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
| 5 | 1, 2, 3, 4 | ifbothda 4527 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: ifcl 4534 keephyp 4560 soltmin 6109 xrmaxlt 13141 xrltmin 13142 xrmaxle 13143 xrlemin 13144 ifle 13157 expmulnbnd 14200 limsupgre 15447 isumless 15811 cvgrat 15849 rpnnen2lem4 16185 ruclem2 16200 sadcaddlem 16427 sadadd3 16431 pcmptdvds 16865 prmreclem5 16891 prmreclem6 16892 pnfnei 23107 mnfnei 23108 xkopt 23542 xmetrtri2 24244 stdbdxmet 24403 stdbdmet 24404 stdbdmopn 24406 xrsxmet 24698 icccmplem2 24712 metdscn 24745 metnrmlem1a 24747 ivthlem2 25353 ovolicc2lem5 25422 ioombl1lem1 25459 ioombl1lem4 25462 ismbfd 25540 mbfi1fseqlem4 25619 mbfi1fseqlem5 25620 itg2const 25641 itg2const2 25642 itg2monolem3 25653 itg2gt0 25661 itg2cnlem1 25662 itg2cnlem2 25663 iblss 25706 itgless 25718 ibladdlem 25721 iblabsr 25731 iblmulc2 25732 bddiblnc 25743 dvferm1lem 25888 dvferm2lem 25890 dvlip2 25900 dgradd2 26174 plydiveu 26206 chtppilim 27386 dchrvmasumiflem1 27412 ostth3 27549 1smat1 33794 poimirlem24 37638 mblfinlem2 37652 itg2addnclem 37665 itg2addnc 37668 itg2gt0cn 37669 ibladdnclem 37670 iblmulc2nc 37679 ftc1anclem5 37691 ftc1anclem8 37694 ftc1anc 37695 |
| Copyright terms: Public domain | W3C validator |