| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
| 4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
| 5 | 1, 2, 3, 4 | ifbothda 4515 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 |
| This theorem is referenced by: ifcl 4522 keephyp 4548 soltmin 6090 xrmaxlt 13090 xrltmin 13091 xrmaxle 13092 xrlemin 13093 ifle 13106 expmulnbnd 14152 limsupgre 15398 isumless 15762 cvgrat 15800 rpnnen2lem4 16136 ruclem2 16151 sadcaddlem 16378 sadadd3 16382 pcmptdvds 16816 prmreclem5 16842 prmreclem6 16843 pnfnei 23145 mnfnei 23146 xkopt 23580 xmetrtri2 24281 stdbdxmet 24440 stdbdmet 24441 stdbdmopn 24443 xrsxmet 24735 icccmplem2 24749 metdscn 24782 metnrmlem1a 24784 ivthlem2 25390 ovolicc2lem5 25459 ioombl1lem1 25496 ioombl1lem4 25499 ismbfd 25577 mbfi1fseqlem4 25656 mbfi1fseqlem5 25657 itg2const 25678 itg2const2 25679 itg2monolem3 25690 itg2gt0 25698 itg2cnlem1 25699 itg2cnlem2 25700 iblss 25743 itgless 25755 ibladdlem 25758 iblabsr 25768 iblmulc2 25769 bddiblnc 25780 dvferm1lem 25925 dvferm2lem 25927 dvlip2 25937 dgradd2 26211 plydiveu 26243 chtppilim 27423 dchrvmasumiflem1 27449 ostth3 27586 1smat1 33828 poimirlem24 37694 mblfinlem2 37708 itg2addnclem 37721 itg2addnc 37724 itg2gt0cn 37725 ibladdnclem 37726 iblmulc2nc 37735 ftc1anclem5 37747 ftc1anclem8 37750 ftc1anc 37751 |
| Copyright terms: Public domain | W3C validator |