Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
3 | simpll 764 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
4 | simplr 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
5 | 1, 2, 3, 4 | ifbothda 4497 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 |
This theorem is referenced by: ifcl 4504 keephyp 4530 soltmin 6041 xrmaxlt 12915 xrltmin 12916 xrmaxle 12917 xrlemin 12918 ifle 12931 expmulnbnd 13950 limsupgre 15190 isumless 15557 cvgrat 15595 rpnnen2lem4 15926 ruclem2 15941 sadcaddlem 16164 sadadd3 16168 pcmptdvds 16595 prmreclem5 16621 prmreclem6 16622 pnfnei 22371 mnfnei 22372 xkopt 22806 xmetrtri2 23509 stdbdxmet 23671 stdbdmet 23672 stdbdmopn 23674 xrsxmet 23972 icccmplem2 23986 metdscn 24019 metnrmlem1a 24021 ivthlem2 24616 ovolicc2lem5 24685 ioombl1lem1 24722 ioombl1lem4 24725 ismbfd 24803 mbfi1fseqlem4 24883 mbfi1fseqlem5 24884 itg2const 24905 itg2const2 24906 itg2monolem3 24917 itg2gt0 24925 itg2cnlem1 24926 itg2cnlem2 24927 iblss 24969 itgless 24981 ibladdlem 24984 iblabsr 24994 iblmulc2 24995 bddiblnc 25006 dvferm1lem 25148 dvferm2lem 25150 dvlip2 25159 dgradd2 25429 plydiveu 25458 chtppilim 26623 dchrvmasumiflem1 26649 ostth3 26786 1smat1 31754 poimirlem24 35801 mblfinlem2 35815 itg2addnclem 35828 itg2addnc 35831 itg2gt0cn 35832 ibladdnclem 35833 iblmulc2nc 35842 ftc1anclem5 35854 ftc1anclem8 35857 ftc1anc 35858 |
Copyright terms: Public domain | W3C validator |