![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
5 | 1, 2, 3, 4 | ifbothda 4566 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4529 |
This theorem is referenced by: ifcl 4573 keephyp 4599 soltmin 6135 xrmaxlt 13157 xrltmin 13158 xrmaxle 13159 xrlemin 13160 ifle 13173 expmulnbnd 14195 limsupgre 15422 isumless 15788 cvgrat 15826 rpnnen2lem4 16157 ruclem2 16172 sadcaddlem 16395 sadadd3 16399 pcmptdvds 16824 prmreclem5 16850 prmreclem6 16851 pnfnei 22716 mnfnei 22717 xkopt 23151 xmetrtri2 23854 stdbdxmet 24016 stdbdmet 24017 stdbdmopn 24019 xrsxmet 24317 icccmplem2 24331 metdscn 24364 metnrmlem1a 24366 ivthlem2 24961 ovolicc2lem5 25030 ioombl1lem1 25067 ioombl1lem4 25070 ismbfd 25148 mbfi1fseqlem4 25228 mbfi1fseqlem5 25229 itg2const 25250 itg2const2 25251 itg2monolem3 25262 itg2gt0 25270 itg2cnlem1 25271 itg2cnlem2 25272 iblss 25314 itgless 25326 ibladdlem 25329 iblabsr 25339 iblmulc2 25340 bddiblnc 25351 dvferm1lem 25493 dvferm2lem 25495 dvlip2 25504 dgradd2 25774 plydiveu 25803 chtppilim 26968 dchrvmasumiflem1 26994 ostth3 27131 1smat1 32773 poimirlem24 36501 mblfinlem2 36515 itg2addnclem 36528 itg2addnc 36531 itg2gt0cn 36532 ibladdnclem 36533 iblmulc2nc 36542 ftc1anclem5 36554 ftc1anclem8 36557 ftc1anc 36558 |
Copyright terms: Public domain | W3C validator |