Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
3 | simpll 763 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
4 | simplr 765 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
5 | 1, 2, 3, 4 | ifbothda 4494 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: ifcl 4501 keephyp 4527 soltmin 6030 xrmaxlt 12844 xrltmin 12845 xrmaxle 12846 xrlemin 12847 ifle 12860 expmulnbnd 13878 limsupgre 15118 isumless 15485 cvgrat 15523 rpnnen2lem4 15854 ruclem2 15869 sadcaddlem 16092 sadadd3 16096 pcmptdvds 16523 prmreclem5 16549 prmreclem6 16550 pnfnei 22279 mnfnei 22280 xkopt 22714 xmetrtri2 23417 stdbdxmet 23577 stdbdmet 23578 stdbdmopn 23580 xrsxmet 23878 icccmplem2 23892 metdscn 23925 metnrmlem1a 23927 ivthlem2 24521 ovolicc2lem5 24590 ioombl1lem1 24627 ioombl1lem4 24630 ismbfd 24708 mbfi1fseqlem4 24788 mbfi1fseqlem5 24789 itg2const 24810 itg2const2 24811 itg2monolem3 24822 itg2gt0 24830 itg2cnlem1 24831 itg2cnlem2 24832 iblss 24874 itgless 24886 ibladdlem 24889 iblabsr 24899 iblmulc2 24900 bddiblnc 24911 dvferm1lem 25053 dvferm2lem 25055 dvlip2 25064 dgradd2 25334 plydiveu 25363 chtppilim 26528 dchrvmasumiflem1 26554 ostth3 26691 1smat1 31656 poimirlem24 35728 mblfinlem2 35742 itg2addnclem 35755 itg2addnc 35758 itg2gt0cn 35759 ibladdnclem 35760 iblmulc2nc 35769 ftc1anclem5 35781 ftc1anclem8 35784 ftc1anc 35785 |
Copyright terms: Public domain | W3C validator |