| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
| 4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
| 5 | 1, 2, 3, 4 | ifbothda 4517 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: ifcl 4524 keephyp 4550 soltmin 6089 xrmaxlt 13101 xrltmin 13102 xrmaxle 13103 xrlemin 13104 ifle 13117 expmulnbnd 14160 limsupgre 15406 isumless 15770 cvgrat 15808 rpnnen2lem4 16144 ruclem2 16159 sadcaddlem 16386 sadadd3 16390 pcmptdvds 16824 prmreclem5 16850 prmreclem6 16851 pnfnei 23123 mnfnei 23124 xkopt 23558 xmetrtri2 24260 stdbdxmet 24419 stdbdmet 24420 stdbdmopn 24422 xrsxmet 24714 icccmplem2 24728 metdscn 24761 metnrmlem1a 24763 ivthlem2 25369 ovolicc2lem5 25438 ioombl1lem1 25475 ioombl1lem4 25478 ismbfd 25556 mbfi1fseqlem4 25635 mbfi1fseqlem5 25636 itg2const 25657 itg2const2 25658 itg2monolem3 25669 itg2gt0 25677 itg2cnlem1 25678 itg2cnlem2 25679 iblss 25722 itgless 25734 ibladdlem 25737 iblabsr 25747 iblmulc2 25748 bddiblnc 25759 dvferm1lem 25904 dvferm2lem 25906 dvlip2 25916 dgradd2 26190 plydiveu 26222 chtppilim 27402 dchrvmasumiflem1 27428 ostth3 27565 1smat1 33770 poimirlem24 37623 mblfinlem2 37637 itg2addnclem 37650 itg2addnc 37653 itg2gt0cn 37654 ibladdnclem 37655 iblmulc2nc 37664 ftc1anclem5 37676 ftc1anclem8 37679 ftc1anc 37680 |
| Copyright terms: Public domain | W3C validator |