![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
5 | 1, 2, 3, 4 | ifbothda 4586 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: ifcl 4593 keephyp 4619 soltmin 6168 xrmaxlt 13243 xrltmin 13244 xrmaxle 13245 xrlemin 13246 ifle 13259 expmulnbnd 14284 limsupgre 15527 isumless 15893 cvgrat 15931 rpnnen2lem4 16265 ruclem2 16280 sadcaddlem 16503 sadadd3 16507 pcmptdvds 16941 prmreclem5 16967 prmreclem6 16968 pnfnei 23249 mnfnei 23250 xkopt 23684 xmetrtri2 24387 stdbdxmet 24549 stdbdmet 24550 stdbdmopn 24552 xrsxmet 24850 icccmplem2 24864 metdscn 24897 metnrmlem1a 24899 ivthlem2 25506 ovolicc2lem5 25575 ioombl1lem1 25612 ioombl1lem4 25615 ismbfd 25693 mbfi1fseqlem4 25773 mbfi1fseqlem5 25774 itg2const 25795 itg2const2 25796 itg2monolem3 25807 itg2gt0 25815 itg2cnlem1 25816 itg2cnlem2 25817 iblss 25860 itgless 25872 ibladdlem 25875 iblabsr 25885 iblmulc2 25886 bddiblnc 25897 dvferm1lem 26042 dvferm2lem 26044 dvlip2 26054 dgradd2 26328 plydiveu 26358 chtppilim 27537 dchrvmasumiflem1 27563 ostth3 27700 1smat1 33750 poimirlem24 37604 mblfinlem2 37618 itg2addnclem 37631 itg2addnc 37634 itg2gt0cn 37635 ibladdnclem 37636 iblmulc2nc 37645 ftc1anclem5 37657 ftc1anclem8 37660 ftc1anc 37661 |
Copyright terms: Public domain | W3C validator |