| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
| 4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
| 5 | 1, 2, 3, 4 | ifbothda 4530 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: ifcl 4537 keephyp 4563 soltmin 6112 xrmaxlt 13148 xrltmin 13149 xrmaxle 13150 xrlemin 13151 ifle 13164 expmulnbnd 14207 limsupgre 15454 isumless 15818 cvgrat 15856 rpnnen2lem4 16192 ruclem2 16207 sadcaddlem 16434 sadadd3 16438 pcmptdvds 16872 prmreclem5 16898 prmreclem6 16899 pnfnei 23114 mnfnei 23115 xkopt 23549 xmetrtri2 24251 stdbdxmet 24410 stdbdmet 24411 stdbdmopn 24413 xrsxmet 24705 icccmplem2 24719 metdscn 24752 metnrmlem1a 24754 ivthlem2 25360 ovolicc2lem5 25429 ioombl1lem1 25466 ioombl1lem4 25469 ismbfd 25547 mbfi1fseqlem4 25626 mbfi1fseqlem5 25627 itg2const 25648 itg2const2 25649 itg2monolem3 25660 itg2gt0 25668 itg2cnlem1 25669 itg2cnlem2 25670 iblss 25713 itgless 25725 ibladdlem 25728 iblabsr 25738 iblmulc2 25739 bddiblnc 25750 dvferm1lem 25895 dvferm2lem 25897 dvlip2 25907 dgradd2 26181 plydiveu 26213 chtppilim 27393 dchrvmasumiflem1 27419 ostth3 27556 1smat1 33801 poimirlem24 37645 mblfinlem2 37659 itg2addnclem 37672 itg2addnc 37675 itg2gt0cn 37676 ibladdnclem 37677 iblmulc2nc 37686 ftc1anclem5 37698 ftc1anclem8 37701 ftc1anc 37702 |
| Copyright terms: Public domain | W3C validator |