| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifboth | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ifboth | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 2 | ifboth.2 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 3 | simpll 766 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜓) | |
| 4 | simplr 768 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ ¬ 𝜑) → 𝜒) | |
| 5 | 1, 2, 3, 4 | ifbothda 4512 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ifcif 4473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4474 |
| This theorem is referenced by: ifcl 4519 keephyp 4545 soltmin 6080 xrmaxlt 13072 xrltmin 13073 xrmaxle 13074 xrlemin 13075 ifle 13088 expmulnbnd 14134 limsupgre 15380 isumless 15744 cvgrat 15782 rpnnen2lem4 16118 ruclem2 16133 sadcaddlem 16360 sadadd3 16364 pcmptdvds 16798 prmreclem5 16824 prmreclem6 16825 pnfnei 23128 mnfnei 23129 xkopt 23563 xmetrtri2 24264 stdbdxmet 24423 stdbdmet 24424 stdbdmopn 24426 xrsxmet 24718 icccmplem2 24732 metdscn 24765 metnrmlem1a 24767 ivthlem2 25373 ovolicc2lem5 25442 ioombl1lem1 25479 ioombl1lem4 25482 ismbfd 25560 mbfi1fseqlem4 25639 mbfi1fseqlem5 25640 itg2const 25661 itg2const2 25662 itg2monolem3 25673 itg2gt0 25681 itg2cnlem1 25682 itg2cnlem2 25683 iblss 25726 itgless 25738 ibladdlem 25741 iblabsr 25751 iblmulc2 25752 bddiblnc 25763 dvferm1lem 25908 dvferm2lem 25910 dvlip2 25920 dgradd2 26194 plydiveu 26226 chtppilim 27406 dchrvmasumiflem1 27432 ostth3 27569 1smat1 33807 poimirlem24 37663 mblfinlem2 37677 itg2addnclem 37690 itg2addnc 37693 itg2gt0cn 37694 ibladdnclem 37695 iblmulc2nc 37704 ftc1anclem5 37716 ftc1anclem8 37719 ftc1anc 37720 |
| Copyright terms: Public domain | W3C validator |