Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  on3ind Structured version   Visualization version   GIF version

Theorem on3ind 33427
Description: Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024.)
Hypotheses
Ref Expression
on3ind.1 (𝑎 = 𝑑 → (𝜑𝜓))
on3ind.2 (𝑏 = 𝑒 → (𝜓𝜒))
on3ind.3 (𝑐 = 𝑓 → (𝜒𝜃))
on3ind.4 (𝑎 = 𝑑 → (𝜏𝜃))
on3ind.5 (𝑏 = 𝑒 → (𝜂𝜏))
on3ind.6 (𝑏 = 𝑒 → (𝜁𝜃))
on3ind.7 (𝑐 = 𝑓 → (𝜎𝜏))
on3ind.8 (𝑎 = 𝑋 → (𝜑𝜌))
on3ind.9 (𝑏 = 𝑌 → (𝜌𝜇))
on3ind.10 (𝑐 = 𝑍 → (𝜇𝜆))
on3ind.i ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂) → 𝜑))
Assertion
Ref Expression
on3ind ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝑏,𝑐   𝜒,𝑏   𝑏,𝑑,𝑒,𝑓   𝜇,𝑏   𝜃,𝑏   𝑐,𝑑,𝑒,𝑓   𝜆,𝑐   𝜃,𝑐   𝜒,𝑓   𝑒,𝑑,𝑓   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝑒,𝑓   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓   𝑋,𝑎,𝑏,𝑐   𝑌,𝑏,𝑐   𝑍,𝑐
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)   𝑋(𝑒,𝑓,𝑑)   𝑌(𝑒,𝑓,𝑎,𝑑)   𝑍(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem on3ind
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((On × On) × On) ∧ 𝑦 ∈ ((On × On) × On) ∧ ((((1st ‘(1st𝑥)) E (1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥)) E (2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((On × On) × On) ∧ 𝑦 ∈ ((On × On) × On) ∧ ((((1st ‘(1st𝑥)) E (1st ‘(1st𝑦)) ∨ (1st ‘(1st𝑥)) = (1st ‘(1st𝑦))) ∧ ((2nd ‘(1st𝑥)) E (2nd ‘(1st𝑦)) ∨ (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑦))) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦))) ∧ 𝑥𝑦))}
2 onfr 6213 . 2 E Fr On
3 epweon 7502 . . 3 E We On
4 weso 5519 . . 3 ( E We On → E Or On)
5 sopo 5465 . . 3 ( E Or On → E Po On)
63, 4, 5mp2b 10 . 2 E Po On
7 epse 5511 . 2 E Se On
8 on3ind.1 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
9 on3ind.2 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
10 on3ind.3 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
11 on3ind.4 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
12 on3ind.5 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
13 on3ind.6 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
14 on3ind.7 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
15 on3ind.8 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
16 on3ind.9 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
17 on3ind.10 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
18 predon 7511 . . . . . . 7 (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎)
19183ad2ant1 1130 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → Pred( E , On, 𝑎) = 𝑎)
20 predon 7511 . . . . . . . 8 (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏)
21203ad2ant2 1131 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → Pred( E , On, 𝑏) = 𝑏)
22 predon 7511 . . . . . . . . 9 (𝑐 ∈ On → Pred( E , On, 𝑐) = 𝑐)
23223ad2ant3 1132 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → Pred( E , On, 𝑐) = 𝑐)
2423raleqdv 3329 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ↔ ∀𝑓𝑐 𝜃))
2521, 24raleqbidv 3319 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ↔ ∀𝑒𝑏𝑓𝑐 𝜃))
2619, 25raleqbidv 3319 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ↔ ∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃))
2721raleqdv 3329 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑒𝑏 𝜒))
2819, 27raleqbidv 3319 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑𝑎𝑒𝑏 𝜒))
2923raleqdv 3329 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁 ↔ ∀𝑓𝑐 𝜁))
3019, 29raleqbidv 3319 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁 ↔ ∀𝑑𝑎𝑓𝑐 𝜁))
3126, 28, 303anbi123d 1433 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁) ↔ (∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁)))
3219raleqdv 3329 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑑𝑎 𝜓))
3323raleqdv 3329 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ↔ ∀𝑓𝑐 𝜏))
3421, 33raleqbidv 3319 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ↔ ∀𝑒𝑏𝑓𝑐 𝜏))
3521raleqdv 3329 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎 ↔ ∀𝑒𝑏 𝜎))
3632, 34, 353anbi123d 1433 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎) ↔ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎)))
3723raleqdv 3329 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜂 ↔ ∀𝑓𝑐 𝜂))
3831, 36, 373anbi123d 1433 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ( E , On, 𝑐)𝜂) ↔ ((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂)))
39 on3ind.i . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂) → 𝜑))
4038, 39sylbid 243 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ( E , On, 𝑐)𝜂) → 𝜑))
411, 2, 6, 7, 2, 6, 7, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 40xpord3ind 33368 1 ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070   class class class wbr 5036  {copab 5098   E cep 5438   Po wpo 5445   Or wor 5446   We wwe 5486   × cxp 5526  Predcpred 6130  Oncon0 6174  cfv 6340  1st c1st 7697  2nd c2nd 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-iota 6299  df-fun 6342  df-fv 6348  df-1st 7699  df-2nd 7700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator