MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on3ind Structured version   Visualization version   GIF version

Theorem on3ind 8726
Description: Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024.)
Hypotheses
Ref Expression
on3ind.1 (𝑎 = 𝑑 → (𝜑𝜓))
on3ind.2 (𝑏 = 𝑒 → (𝜓𝜒))
on3ind.3 (𝑐 = 𝑓 → (𝜒𝜃))
on3ind.4 (𝑎 = 𝑑 → (𝜏𝜃))
on3ind.5 (𝑏 = 𝑒 → (𝜂𝜏))
on3ind.6 (𝑏 = 𝑒 → (𝜁𝜃))
on3ind.7 (𝑐 = 𝑓 → (𝜎𝜏))
on3ind.8 (𝑎 = 𝑋 → (𝜑𝜌))
on3ind.9 (𝑏 = 𝑌 → (𝜌𝜇))
on3ind.10 (𝑐 = 𝑍 → (𝜇𝜆))
on3ind.i ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂) → 𝜑))
Assertion
Ref Expression
on3ind ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆)
Distinct variable groups:   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑍,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎,𝑏,𝑐   𝜒,𝑏,𝑓   𝜇,𝑏   𝜆,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem on3ind
StepHypRef Expression
1 onfr 6434 . 2 E Fr On
2 epweon 7810 . . 3 E We On
3 weso 5691 . . 3 ( E We On → E Or On)
4 sopo 5627 . . 3 ( E Or On → E Po On)
52, 3, 4mp2b 10 . 2 E Po On
6 epse 5682 . 2 E Se On
7 on3ind.1 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
8 on3ind.2 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
9 on3ind.3 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
10 on3ind.4 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
11 on3ind.5 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
12 on3ind.6 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
13 on3ind.7 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
14 on3ind.8 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
15 on3ind.9 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
16 on3ind.10 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
17 predon 7821 . . . . . . 7 (𝑎 ∈ On → Pred( E , On, 𝑎) = 𝑎)
18173ad2ant1 1133 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → Pred( E , On, 𝑎) = 𝑎)
19 predon 7821 . . . . . . . 8 (𝑏 ∈ On → Pred( E , On, 𝑏) = 𝑏)
20193ad2ant2 1134 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → Pred( E , On, 𝑏) = 𝑏)
21 predon 7821 . . . . . . . . 9 (𝑐 ∈ On → Pred( E , On, 𝑐) = 𝑐)
22213ad2ant3 1135 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → Pred( E , On, 𝑐) = 𝑐)
2322raleqdv 3334 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ↔ ∀𝑓𝑐 𝜃))
2420, 23raleqbidv 3354 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ↔ ∀𝑒𝑏𝑓𝑐 𝜃))
2518, 24raleqbidv 3354 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ↔ ∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃))
2620raleqdv 3334 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑒𝑏 𝜒))
2718, 26raleqbidv 3354 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ↔ ∀𝑑𝑎𝑒𝑏 𝜒))
2822raleqdv 3334 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁 ↔ ∀𝑓𝑐 𝜁))
2918, 28raleqbidv 3354 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁 ↔ ∀𝑑𝑎𝑓𝑐 𝜁))
3025, 27, 293anbi123d 1436 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁) ↔ (∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁)))
3118raleqdv 3334 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ↔ ∀𝑑𝑎 𝜓))
3222raleqdv 3334 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ↔ ∀𝑓𝑐 𝜏))
3320, 32raleqbidv 3354 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ↔ ∀𝑒𝑏𝑓𝑐 𝜏))
3420raleqdv 3334 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎 ↔ ∀𝑒𝑏 𝜎))
3531, 33, 343anbi123d 1436 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎) ↔ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎)))
3622raleqdv 3334 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (∀𝑓 ∈ Pred ( E , On, 𝑐)𝜂 ↔ ∀𝑓𝑐 𝜂))
3730, 35, 363anbi123d 1436 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ( E , On, 𝑐)𝜂) ↔ ((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂)))
38 on3ind.i . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑𝑎𝑒𝑏𝑓𝑐 𝜃 ∧ ∀𝑑𝑎𝑒𝑏 𝜒 ∧ ∀𝑑𝑎𝑓𝑐 𝜁) ∧ (∀𝑑𝑎 𝜓 ∧ ∀𝑒𝑏𝑓𝑐 𝜏 ∧ ∀𝑒𝑏 𝜎) ∧ ∀𝑓𝑐 𝜂) → 𝜑))
3937, 38sylbid 240 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑒 ∈ Pred ( E , On, 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ( E , On, 𝑎)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ( E , On, 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)∀𝑓 ∈ Pred ( E , On, 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ( E , On, 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ( E , On, 𝑐)𝜂) → 𝜑))
401, 5, 6, 1, 5, 6, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 39xpord3ind 8197 1 ((𝑋 ∈ On ∧ 𝑌 ∈ On ∧ 𝑍 ∈ On) → 𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067   E cep 5598   Po wpo 5605   Or wor 5606   We wwe 5651  Predcpred 6331  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  naddass  8752
  Copyright terms: Public domain W3C validator