MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimin2g Structured version   Visualization version   GIF version

Theorem fimin2g 9390
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fimin2g ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimin2g
StepHypRef Expression
1 3simpc 1150 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
2 sopo 5546 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
323ad2ant1 1133 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Po 𝐴)
4 simp2 1137 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
5 frfi 9176 . . 3 ((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
63, 4, 5syl2anc 584 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Fr 𝐴)
7 ssid 3953 . . . 4 𝐴𝐴
8 fri 5577 . . . 4 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
97, 8mpanr1 703 . . 3 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
109an32s 652 . 2 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
111, 6, 10syl2anc 584 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2113  wne 2929  wral 3048  wrex 3057  wss 3898  c0 4282   class class class wbr 5093   Po wpo 5525   Or wor 5526   Fr wfr 5569  Fincfn 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7803  df-en 8876  df-fin 8879
This theorem is referenced by:  fiming  9391
  Copyright terms: Public domain W3C validator