![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimin2g | Structured version Visualization version GIF version |
Description: A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
fimin2g | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1150 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅)) | |
2 | sopo 5600 | . . . 4 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Po 𝐴) |
4 | simp2 1137 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) | |
5 | frfi 9271 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Fr 𝐴) |
7 | ssid 4000 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
8 | fri 5629 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | |
9 | 7, 8 | mpanr1 701 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
10 | 9 | an32s 650 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
11 | 1, 6, 10 | syl2anc 584 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ⊆ wss 3944 ∅c0 4318 class class class wbr 5141 Po wpo 5579 Or wor 5580 Fr wfr 5621 Fincfn 8922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-om 7839 df-en 8923 df-fin 8926 |
This theorem is referenced by: fiming 9475 |
Copyright terms: Public domain | W3C validator |